----------PARAMETERS.
PARAMETER (pi=3.141593)
PARAMETER (q=2.531) !(mass(neutron)-mass(proton))/m(electron)
PARAMETER (const1=0.09615) !Relation between time and temperature.
PARAMETER (const2=6.6700e-8) !Gravitational constant.
PARAMETER (ir=1) !Input unit number.
PARAMETER (iw=1) !Output unit number.
PARAMETER (itmax=40) !Maximum # of line to be printed.
PARAMETER (min_time_step=1.e-16) !Lower limit on size of time step.
PARAMETER (iter=50) !Number of gaussian quads.
PARAMETER (eps=2.e-4) !Tolerance for convergence (.ge. 1.e-7).
PARAMETER (mord=1) !Higher order in correction.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (nvar=29) !Number of variables to be evolved.
PARAMETER (lrec=64) !Total # of nuclear reactions for irun = 2.
PARAMETER (krec=34) !Total # of nuclear reactions for irun = 3.
PARAMETER (lnuc=18) !Total # of nuclides for irun = 2.
PARAMETER (knuc=9) !Total # of nuclides for irun = 3.
CHARACTER(255) :: output_file
------VARIABLES FOR STERILES
PARAMETER (n_big=1e7)
DOUBLE PRECISION ts(n_big) !Time array (in seconds)
DOUBLE PRECISION aTs(n_big)
DOUBLE PRECISION t9s(n_big) !Photon temperature array (in 10**9 K)
DOUBLE PRECISION dt9s(n_big) !Temperature variation (in 10**9 K / s)
DOUBLE PRECISION rho_tot(n_big) !Total energy density array (in g cm**-3)
DOUBLE PRECISION ratef(n_big) !Array for the total rate n -> p
DOUBLE PRECISION rater(n_big) !Array for the total rate p -> n
DOUBLE PRECISION hvs(n_big)
INTEGER nlines !An integer telling the number of lines
| ! of data coming from the other program
END
PROGRAM nuc123
C----------COMMON AREAS.
COMMON /recpr0/ reacpr !Reaction parameter values.
COMMON /recpr/ iform,ii,jj,kk,ll,rev,q9 !Reaction parameter names.
COMMON /rates/ f,r !Reaction rates.
COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
COMMON /check1/ itime !Computation location.
COMMON /runopt/ irun,isize,jsize !Run options.
COMMON /outopt/ nout,outfile !Output option.
C----------REACTION PARAMETERS FROM BLOCK DATA.
DOUBLE PRECISION reacpr(nrec,8) !Reaction parameters.
C----------REACTION PARAMETERS.
INTEGER iform(nrec) !Reaction type code (1-11).
INTEGER ii(nrec) !Incoming nuclide type (1-26).
INTEGER jj(nrec) !Incoming light nuclide type (1-6).
INTEGER kk(nrec) !Outgoing light nuclide type (1-6).
INTEGER ll(nrec) !Outgoing nuclide type (1-26).
DOUBLE PRECISION rev(nrec) !Reverse reaction coefficient.
DOUBLE PRECISION q9(nrec) !Energy released in reaction.
C----------REACTION RATES.
DOUBLE PRECISION f(nrec) !Forward reaction rate coefficients.
DOUBLE PRECISION r(nrec) !Reverse reaction rate coefficients.
C----------DEFAULT COMPUTATION PARAMETERS.
DOUBLE PRECISION cy0 !Default cy.
DOUBLE PRECISION ct0 !Default ct.
DOUBLE PRECISION t9i0 !Default t9i.
DOUBLE PRECISION t9f0 !Default t9f.
DOUBLE PRECISION ytmin0 !Default ytmin.
INTEGER inc0 !Default accumulation increment.
C----------COMPUTATIONAL PARAMETERS.
DOUBLE PRECISION cy !Time step limiting constant on abundances.
DOUBLE PRECISION ct !Time step limiting constant on temperature.
DOUBLE PRECISION t9i !Initial temperature (in 10**9 K).
DOUBLE PRECISION t9f !Final temperature (in 10**9 k).
DOUBLE PRECISION ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
C----------DEFAULT MODEL PARAMETERS.
DOUBLE PRECISION c0(3) !Default c.
DOUBLE PRECISION cosmo0 !Default cosmological constant.
DOUBLE PRECISION xi0(3) !Default neutrino degeneracy parameters.
C----------EARLY UNIVERSE MODEL PARAMETERS.
DOUBLE PRECISION c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
DOUBLE PRECISION cosmo !Cosmological constant.
DOUBLE PRECISION xi(3) !Neutrino degeneracy parameters.
C----------DEFAULT VARIATIONAL PARAMETERS.
DOUBLE PRECISION dt0 !Default initial time step.
DOUBLE PRECISION eta0 !Default baryon-to-photon ratio.
C----------VARIATIONAL PARAMETERS.
DOUBLE PRECISION dt1 !Initial time step.
DOUBLE PRECISION eta1 !Baryon-to-photon ratio.
C----------RUN OPTION.
INTEGER irun !Run network size.
INTEGER isize !Number of nuclides in computation.
INTEGER jsize !Number of reactions in computation.
C----------OUTPUT FILE STATUS.
INTEGER nout !Number of output requests.
LOGICAL outfile !Indicates if output file used.
C--------OPEN FILES AND PRINT GREETING-----------------------------
CALL GETENV("OUTPUT", output_file)
output_file = TRIM(output_file)
IF (output_file == '') THEN
output_file = 'nuc123.dat'
END IF
OPEN (unit=2, file=output_file, status='unknown') !Output file.
itime = 1 !Time = beginning of program.
CALL check !Check interface subroutine.
PRINT 1000
1000 FORMAT (6(/),
| 2(' ',4x,'NN',6x,'NN UU',6x,'UU',4x,8('C'),6x,'11',8x,
| 6('2'),6x,6('3'),/),
| 2(' ',4x,'NN',6x,'NN UU',6x,'UU CC',12x,'1111',6x,
| '22',6x,'22 33',6x,'33',/),
| 2(' ',4x,'NNNN NN UU',6x,'UU CC',14x,'11',14x,
| '22',10x,'33',/),
| 2(' ',4x,'NN NN NN UU',6x,'UU CC',14x,'11',12x,
| '22',10x,'33',/),
| 2(' ',4x,'NN NNNN UU',6x,'UU CC',14x,'11',10x,
| '22',14x,'33',/),
| 2(' ',4x,'NN',6x,'NN UU',6x,'UU CC',14x,'11',8x,
| '22',8x,'33',6x,'33',/),
| 2(' ',4x,'NN',6x,'NN ',10('U'),4x,8('C'),4x,6('1'),4x,
| 10('2'),4x,6('3'),/),/,
| ' ',26x,'WRITTEN BY LAWRENCE KAWANO',///,
| ' ','(Press <RETURN> to continue): ',$)
..........READ IN REACTION PARAMETERS.
iform(i) = int(reacpr(i,2))!Reaction type.
ii(i) = int(reacpr(i,3))!Incoming nuclide type.
jj(i) = int(reacpr(i,4))!Incoming nuclide type.
kk(i) = int(reacpr(i,5))!Outgoing nuclide type.
ll(i) = int(reacpr(i,6))!Outgoing nuclide type.
rev(i) = reacpr(i,7) !Reverse reaction coefficient.
q9(i) = reacpr(i,8) !Energy released.
..........SET RUN OPTIONS TO DEFAULT.
END DO
irun = 1 !Do full run.
isize = nnuc !Use all 26 nuclides.
jsize = nrec !Use all 88 reactions.
..........SET OUTPUT OPTION TO DEFAULT.
nout = 0 !No output requests.
outfile = .false. !Output file not used.
..........SET VALUES TO DEFAULT.
cy = cy0 !Time step limiting constant on abundances.
ct = ct0 !Time step limiting constant on temperature.
t9i = t9i0 !Initial temperature.
t9f = t9f0 !Final temperature.
ytmin = ytmin0 !Smallest abundances allowed.
inc = inc0 !Accumulation increment.
c(1) = c0(1) !Variation of gravitational constant.
c(2) = c0(2) !Neutron lifetime.
c(3) = c0(3) !Number of neutrino species.
cosmo = cosmo0 !Cosmological constant.
xi(1) = xi0(1) !Electron degeneracy parameter.
xi(2) = xi0(2) !Muon degeneray parameter.
xi(3) = xi0(3) !Tauon degeneracy parameter.
3000 FORMAT (8(/),
| ' ',32x,'MENU SELECTION',/,
| ' ',32x,'---- ---------',//,
| ' ',24x,'1. HELP',/,
| ' ',24x,'2. SET COMPUTATION PARAMETERS',/,
| ' ',24x,'3. SET MODEL PARAMETERS',/,
| ' ',24x,'4. RUN',/,
| ' ',24x,'5. OUTPUT',/,
| ' ',24x,'6. EXIT',8(/),
| ' ',24x,'Enter selection (1-6): ',$)
C40--------BRANCH TO APPROPRIATE SECTION--------------------------------
GO TO (410,420,430,440,450,460),inum
GO TO 460 !Improper input or <RETURN>.
410 CONTINUE !Help section.
CALL help
GO TO 500
420 CONTINUE !Set computation parameters section.
CALL setcom
GO TO 500
430 CONTINUE !Set model parameters section.
CALL setmod
GO TO 500
440 CONTINUE !Run section.
itime = 2 !Time = beginning of run section.
CALL check !Check interface subroutine.
CALL run
itime = 9 !Time = end of run section.
CALL check !Check interface subroutine.
GO TO 500
450 CONTINUE !Output section.
CALL output
GO TO 500
460 CONTINUE !Exit section.
cccccccccc CLOSE (unit=1) !End terminal session.
itime = 10 !Time = end of program.
CALL check !Check interface subroutine.
IF (outfile) THEN
close (unit=2,status='keep') !Close output file.
ELSE
CLOSE (unit=2,status='delete') !File not used - dispose.
END IF
STOP
1000 FORMAT (8(/),
| ' ',32x,'HELP SELECTION',/,
| ' ',32x,'---- ---------',//,
| ' ',24x,'1. INTRODUCTION',/,
| ' ',24x,'2. SETTING UP A RUN',/,
| ' ',24x,'3. RUNNING THE PROGRAM',/,
| ' ',24x,'4. OUTPUT OPTIONS',/,
| ' ',24x,'5. GENERAL METHOD OF COMPUTATION',/,
| ' ',24x,'6. USING THE INTERFACE SUBROUTINE',/,
| ' ',24x,'7. EXIT',7(/),
| ' ',24x,'Enter selection (1-7): ',$)
C20--------BRANCH TO APPROPRIATE SECTION---------------------------------
GO TO (210,220,230,240,250,260,270),inum
GO TO 270 !Improper input or <RETURN>.
C21--------INTRODUCTION SECTION------------------------------------------
210 CONTINUE !Setting up a run section.
PRINT 2100
2100 FORMAT (/,
| ' ',31x,'INTRODUCTION',/,
| ' ',31x,'------------',2(/),
| ' ','Welcome to the wonderful world of primor',
| 'dial nucleosynthesis. NUC123 is a ',/,
| ' ','FORTRAN program designed to provide the ',
| 'early universe researcher with the tools',/,
| ' ','necessary for the investigation of primo',
| 'rdial nucleosynthesis. Its menu-driven ',/,
| ' ','interface allows the user to first set c',
| 'omputation parameters (such as the time ',/,
| ' ','step) and model parameters (such as the ',
| 'neutron lifetime and number of neutri- ',/,
| ' ','nos) before doing single runs or multipl',
| 'e runs (in which desired model parame- ',/,
| ' ','ters are varied over a desired range.) ',
| 'After the run, the user can utilize the ',/,
| ' ','menu to either produce an output file or',
| ' to view the most recent run on the ',/,
| ' ','screen. The program comes with an empty',
| ' subroutine CHECK into which the user ',/,
| ' ','may wish to put additional code to add t',
| 'o the computation in an original manner.',10(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
C22--------SET UP RUN SECTION------------------------------------------
220 CONTINUE !Setting up a run section.
PRINT 2200
2200 FORMAT (/,
| ' ',29x,'SETTING UP A RUN',/,
| ' ',29x,'------- -- - ---',2(/),
| ' ','I. Setting computation parameters. ',/,
| ' ',' The accuracy of the computation and t',
| 'he relevant temperature region can be ',/,
| ' ',' set by the following parameters: ',/,
| ' ',' A. Time step limiting constant 1 (d',
| 'efault value of 0.3) ',/,
| ' ',' B. Time step limiting constant 2 (d',
| 'efault value of 0.03) ',/,
| ' ',' C. Initial time step (default value',
| ' of 10**-4) ',/,
| ' ',' D. Initial temperature (default val',
| 'ue of 10**2) ',/,
| ' ',' This is the temperature at the be',
| 'ginning of the run in units of 10**9 K ',/,
| ' ',' E. Final temperature (default value',
| ' of 10**-2) ',/,
| ' ',' This is the termination temperatu',
| 're of the run in units of 10**9 K ',/,
| ' ',' F. Smallest abundances allowed (def',
| 'ault value of 10**-25) ',/,
| ' ',' Elemental abundances are not allo',
| 'wed to drop below this value ',/,
| ' ',' G. # of iterations for each accumula',
| 'tion (default value of 30) ',/,
| ' ',' This is the number of iterations ',
| 'before values are put in an output array',6(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2202
2202 FORMAT (/,
| ' ','II. Setting model parameters. ',/,
| ' ',' Default values here give what is know',
| 'n as the standard model with best guess ',/,
| ' ',' figure on the neutron lifetime of 889',
| '.541 seconds. Nonstandard scenarios can',/,
| ' ',' be investigated by varying the follow',
| 'ing parameters: ',/,
| ' ',' A. The gravitational constant ',/,
| ' ',' (The default value of one here gi',
| 'ves the usual 6.6720e-8 dyne*cm**2/g**2)',/,
| ' ',' B. Neutron life-time (default value',
| ' of 889. seconds) ',/,
| ' ',' C. Number of neutrino species (defa',
| 'ult value of 3 light neutrinos) ',/,
| ' ',' D. Final baryon-to-photon ratio (se',
| 't to log(eta) = -9.5) ',/,
| ' ',' E. Cosmological constant (default v',
| 'alue of 0) ',/,
| ' ',' F. Neutrino degeneracy parameters (',
| 'default values all 0) ',/,
| ' ',' There are 3 separate parameters f',
| 'or the electron, muon, and tau neutrinos',11(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
C23--------RUN PROGRAM SECTION------------------------------------------
230 CONTINUE !Running the program section.
PRINT 2300
2300 FORMAT (/,
| ' ',28x,'RUNNING THE PROGRAM',/,
| ' ',28x,'------- --- -------',2(/),
| ' ','I. Setting run speed. ',/,
| ' ',' The code can be run at 3 different se',
| 'ttings of speed. The running of the ',/,
| ' ',' code can be speeded up by reducing th',
| 'e number of nuclides and reactions. The',/,
| ' ',' complete computation takes into accou',
| 'nt the following nuclides: n, p, d, t, ',/,
| ' ',' He3, He4, Li6, Li7, Be7, Li8, B8, Be9',
| ',B10, B11, C11, B12, C12, N12, C13, N13,',/,
| ' ',' C14, N14, O14, N15, O15, and O16. ',/,
| ' ',' The given CPU percentages and abundan',
| 'ce variations are with regard to a ',/,
| ' ',' single run with all default parameter',
| ' values. ',/,
| ' ',' A. 26 nuclides, 88 reactions (defaul',
| 't) ',/,
| ' ',' nuclides from n to O16 ',/,
| ' ',' B. 18 nuclides, 60 reactions ',/,
| ' ',' nuclides from n to N12 ',/,
| ' ',' (63% CPU time, variation = .1%) ',/,
| ' ',' C. 9 nuclides, 25 reactions ',/,
| ' ',' nuclides from n to Be7 ',/,
| ' ',' (20% CPU time, variation = .5%) ',4(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2302
2302 FORMAT (/,
| ' ','II. Do single run. ',/,
| ' ',' A. Interactive. ',/,
| ' ',' In an interactive session, the us',
| 'er can readily input the computational ',/,
| ' ',' and model parameters and begin th',
| 'e computation process. The run itself ',/,
| ' ',' is commenced when option 2, "GO",',
| ' in the "RUN" section is requested. ',//,
| ' ',' B. Batch. ',/,
| ' ',' To run the program in a batch mod',
| 'e, it must be altered slightly so that ',/,
| ' ',' the I/O takes place with files in',
| 'stead of a terminal. This is done by ',/,
| ' ',' setting different values for the ',
| 'input and output unit number parameters ',/,
| ' ',' "ir" and "iw" and assigning them ',
| 'to different files in NUC123. In the ',/,
| ' ',' file assigned the "ir" unit numbe',
| 'r, one must place the responses to the ',/,
| ' ',' queries of the program. ',10(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2304
2304 FORMAT (/,
| ' ','III. Do multiple runs. ',/,
| ' ',' A wide range of early universe model',
| 's can be covered by doing many runs ',/,
| ' ',' while one or more parameters are var',
| 'ied over a range of interest. The ',/,
| ' ',' parameters that can be varied are th',
| 'e following: ',/,
| ' ',' A. Eta ',
| ' - Logrithmic variation ',/,
| ' ',' B. Gravitational constant ',
| ' - Linear variation ',/,
| ' ',' C. Neutron lifetime ',
| ' - Linear variation ',/,
| ' ',' D. Number of neutrino species ',
| ' - Linear variation ',/,
| ' ',' E. Cosmological constant ',
| ' - Linear variation ',/,
| ' ',' F. Neutrino degeneracy parameters ',
| ' - Linear variation ',/,
| ' ',' 1. Electron neutrino ',/,
| ' ',' 2. Muon neutrino ',/,
| ' ',' 3. Tauon neutrino ',/,
| ' ',' At most 3 parameters can be varied. ',
| ' The first parameter inputted will be ',/,
| ' ',' will be varied in the outermost loop',
| ' and the third parameter inputted will ',/,
| ' ',' be varied in the innermost loop. ',7(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
ELSE
GO TO 300
END IF !(inum.eq.1)
C24--------OUTPUT OPTIONS SECTION----------------------------------
240 CONTINUE !Output options section.
PRINT 2400
2400 FORMAT (/,
| ' ',30x,'OUTPUT OPTIONS',/,
| ' ',30x,'------ -------',2(/),
| ' ','I. Request output file. ',/,
| ' ',' After a run, the user can request the',
| ' program to put the resulting numbers ',/,
| ' ',' into an output file. This can be don',
| 'e as many times as desired and all the ',/,
| ' ',' information will be put in one new fi',
| 'le under the name of "NUC123.DAT." If ',/,
| ' ',' there is no request during the entire',
| ' running of the program, this file is ',/,
| ' ',' not created. If an output file is re',
| 'quested after a multiple run, only the ',/,
| ' ',' information from the very last run wi',
| 'll be given. The output file will give ',/,
| ' ',' the computational and model parameter',
| 's for each run and will contain the ',/,
| ' ',' following information: ',/,
| ' ',' A. Temperatures in decreasing order ',/,
| ' ',' B. Abundances for n, p, d, t, He3, H',
| 'e4, Li6, Li7, Be7, and Li8 & up ',/,
| ' ',' (p and He4 are in mass fraction, ',
| 'the rest in ratios to the p abundance) ',/,
| ' ',' C. Time, time interval, chemical pot',
| 'ential of the electron ',/,
| ' ',' D. Energy densities for photons, ele',
| 'ctrons, electron neutrinos, and baryons ',/,
| ' ',' E. Baryon-to-photon ratio, expansion',
| ' rate of the universe ',5(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2402
2402 FORMAT (/,
| ' ','II. Request output on screen. ',/,
| ' ',' Instead of waiting to print out an o',
| 'utput file, the user can immediately ',/,
| ' ',' access the results of the latest run',
| ' by requesting the output on the ',/,
| ' ',' screen. There are four screens on e',
| 'ach of which are displayed the ',/,
| ' ',' computational and model parameters a',
| 'nd the temperature: ',/,
| ' ',' A. Abundances for d, t, He3, He4, a',
| 'nd Li7 ',/,
| ' ',' (He4 in mass fraction, rest as a',
| ' ratio with the p abundance) ',/,
| ' ',' B. Abundances for n, p, Li6, Be7, a',
| 'nd Li8 & up ',/,
| ' ',' (p in mass fraction, rest as a r',
| 'atio with the p abundance) ',/,
| ' ',' C. Energy densities for photons, el',
| 'ectrons, electron neutrinos, & baryons ',/,
| ' ',' D. Time, time interval, chemical po',
| 'tential of the electron, ',/,
| ' ',' baryon-to-photon ratio, and expa',
| 'nsion rate of the universe ',11(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
C25--------METHOD OF COMPUTATION SECTION--------------------------------
250 CONTINUE !General method of computation section.
PRINT 2500
2500 FORMAT (/,
| ' ',22x,'GENERAL METHOD OF COMPUTATION',/,
| ' ',22x,'------- ------ -- -----------',2(/),
| ' ','I. Time evolution algorithm. ',/,
| ' ',' The program utilizes a 2-point Runge-',
| 'Kutta scheme (located in subroutine ',/,
| ' ',' DRIVER) to time-evolve the temperatur',
| 'e, the quantity hv (the ratio of the ',/,
| ' ',' baryon density to T**3), the chemical',
| ' potential of the electron, and the ',/,
| ' ',' nuclide abundances. In the 2-point R',
| 'unge-Kutta routine, a variable v at time',/,
| ' ',' t0 (= v0) is evolved to a time t1 by ',
| 'adding to v0 the average of the ',/,
| ' ',' derivatives evaluated at t0 and at t1',
| ' multiplied by dt: ',/,
| ' ',' v1 = v0 + 0.5(dvdt(t0)+dvdt(t1)) ',/,
| ' ',' where dvdt(t1) is gotten by first fin',
| 'ding v1'' = v0 + dvdt(t0). The ',/,
| ' ',' derivatives of the nuclide abundances',
| ' are first computed and these are used ',/,
| ' ',' to find the derivatives of t9, hv, an',
| 'd phie (this is done in subroutine ',/,
| ' ',' DERIVS). To compute the time derivat',
| 'ives of the nuclide abundances, a matrix',/,
| ' ',' equation is set up (in subroutine SOL',
| ') and is solved (in subroutine EQSLIN) ',/,
| ' ',' by gaussian elimination utilizing imp',
| 'licit differentiation. ',6(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2502
2502 FORMAT (/
| ' ','II. Hierarchy of Subroutines. ',/,
| ' ',' NUC123 ',
| ' Main program (main menu) ',/,
| ' ',' HELP ',
| ' Help option ',/,
| ' ',' SETCOM ',
| ' Set computational parameters',/,
| ' ',' SETMOD ',
| ' Set model parameters ',/,
| ' ',' RUN ',
| ' Run computation code ',/,
| ' ',' DRIVER ',
| ' Main routine (Runge-Kutta loop) ',/,
| ' ',' START ',
| ' Initialization routine ',/,
| ' ',' RATE0 ',
| ' Computes weak decay rates ',/,
| ' ',' DERIVS ',
| ' Computes time derivatives ',/,
| ' ',' THERM ',
| ' Computes energy densities ',/,
| ' ',' BESSEL ',
| ' Gives functions of Kn ',/,
| ' ',' KNUX ',
| ' Computes modified Bessel fcn Kn ',/,
| ' ',' NUDENS ',
| ' Computes neutrino energy density ',/,
| ' ',' RATE1-4 ',
| ' Computes rates for reactions',/,
| ' ',' SOL ',
| ' Builds A matrix for eqn dy/dt = Ay ',/,
| ' ',' EQSLIN ',
| ' Solves dy/dt=Ay by gaussian elim ',/,
| ' ',' ACCUM ',
| ' Output accumulator ',/,
| ' ',' OUTPUT ',
| ' Allows user to output result',4(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
C26--------USING INTERFACE SUBROUTINE SECTION.
260 CONTINUE !Using the interface subroutine section.
PRINT 2600
2600 FORMAT (/,
| ' ',22x,'USING THE INTERFACE SUBROUTINE',/,
| ' ',22x,'----- --- --------- ----------',2(/),
| ' ','I. Purpose. ',/,
| ' ',' The interface subroutine CHECK is des',
| 'igned to be an outlet of the program ',/,
| ' ',' into which alterations can be easily ',
| 'plugged. Programs are normally modified',/,
| ' ',' by searching through the program, ide',
| 'ntifying the appropriate areas for ',/,
| ' ',' alterations, and interspersing new co',
| 'mmands while deleting some old ones. ',/,
| ' ',' This process can get tricky unless on',
| 'e actively documents the alterations: ',/,
| ' ',' one might lose track of all of the mo',
| 'difications and deletions. Thus, it is ',/,
| ' ',' worthwhile to put most if not all of ',
| 'the necessary changes into one ',/,
| ' ',' subroutine which is to be called from',
| ' strategic locations in the main ',/,
| ' ',' program. Furthermore, by putting cha',
| 'nges into one small subroutine, one need',/,
| ' ',' only to compile the subroutine CHECK ',
| 'each time instead of the entire nucleo- ',/,
| ' ',' synthesis code. ',8(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2602
2602 FORMAT (/,
| ' ','II. Description. ',/,
| ' ',' Subroutine CHECK is an empty subrouti',
| 'ne with a large COMMON area, giving the ',/,
| ' ',' user ready access to all of the impor',
| 'tant variables in the computations. The',/,
| ' ',' routine is called from various locati',
| 'ons in the main program and the location',/,
| ' ',' spot in the program is labeled by the',
| ' flag "itime". The set call locations ',/,
| ' ',' are given below: ',/,
| ' ',' A. itime = 1 (NUC123, very beginning',
| ' of program run) ',/,
| ' ',' (appropriate for opening files, i',
| 'nitializing variables) ',/,
| ' ',' B. itime = 2 (NUC123, right before g',
| 'oing into the RUN section) ',/,
| ' ',' C. itime = 3 (RUN, right before goin',
| 'g into DRIVER to do the computations) ',/,
| ' ',' D. itime = 4 (DRIVER, in 1st R-K loo',
| 'p after computing derivatives in DERIVS)',/,
| ' ',' E. itime = 7 (DRIVER, in 2nd R-K loo',
| 'p after computing derivatives in DERIVS)',/,
| ' ',' F. itime = 8 (RUN, right after comin',
| 'g back from DRIVER) ',/,
| ' ',' G. itime = 9 (NUC123, right after co',
| 'ming back from the RUN section) ',/,
| ' ',' H. itime =10 (NUC123, very end of pr',
| 'ogram run) ',/,
| ' ',' (appropriate for closing files) ',/,
| ' ',' The difference between the (2,9) pair',
| 'ing and the (3,8) pairing is that for a ',/,
| ' ',' multiple run, the (3,8) pairing would',
| ' be called before and after every run ',/,
| ' ',' but the (2,9) pairing would be called',
| ' before and after the entire sequence. ',4(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2604
2604 FORMAT (/,
| ' ','III. Implementation. ',/,
| ' ',' The additional program statements ar',
| 'e needed in the subroutine CHECK. If a',/,
| ' ',' particular command is to be executed',
| ' when the computer is at a certain ',/,
| ' ',' location in the program -- say label',
| 'ed by itime = 8 -- then in CHECK, one ',/,
| ' ',' must place the command under the sta',
| 'tement, IF (itime.eq.8).... The user ',/,
| ' ',' is at leisure to place his own locat',
| 'ion indicators (5,6) and CALL CHECK ',/,
| ' ',' statements anywhere in the program a',
| 's long as there is a COMMON /check/ ',/,
| ' ',' statement in the particular subrouti',
| 'ne to carry the value of itime along. ',15(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
ELSE
GO TO 300
END IF !(inum.eq.1)
C27--------EXIT SECTION----------------------------------------------
270 CONTINUE !Exit section.
RETURN
C30--------GO BACK TO MAIN MENU-------------------------------------------
300 CONTINUE
GO TO 100
END
C----------COMMON AREAS.
COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
C----------DEFAULT COMPUTATION PARAMETERS.
DOUBLE PRECISION cy0 !Default cy.
DOUBLE PRECISION ct0 !Default ct.
DOUBLE PRECISION t9i0 !Default t9i.
DOUBLE PRECISION t9f0 !Default t9f.
DOUBLE PRECISION ytmin0 !Default ytmin.
INTEGER inc0 !Default accumulation increment.
C----------COMPUTATION PARAMETERS.
DOUBLE PRECISION cy !Time step limiting constant on abundances.
DOUBLE PRECISION ct !Time step limiting constant on temperature.
DOUBLE PRECISION t9i !Initial temperature (in 10**9 K).
DOUBLE PRECISION t9f !Final temperature (in 10**9 K).
DOUBLE PRECISION ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
1000 FORMAT (8(/),
| ' ',21x,'SET COMPUTATION PARAMETERS SELECTION',/,
| ' ',21x,'--- ----------- ---------- ---------',//,
| ' ',10x,' 1. CHANGE TIME-STEP LIMITING CONSTANT 1 FROM ',
| f5.3,/,
| ' ',10x,' 2. CHANGE TIME-STEP LIMITING CONSTANT 2 FROM ',
| f5.3,/,
| ' ',10x,' 3. CHANGE INITIAL TIME-STEP FROM ',
| 1pe8.2,' SECONDS',/,
| ' ',10x,' 4. CHANGE INITIAL TEMPERATURE FROM ',
| 1pe8.2,' (10**9 K)',/,
| ' ',10x,' 5. CHANGE FINAL TEMPERATURE FROM ',
| 1pe8.2,' (10**9 K)',/,
| ' ',10x,' 6. CHANGE SMALLEST ABUNDANCES ALLOWED FROM ',
| 1pe8.2,/,
| ' ',10x,' 7. CHANGE ACCUMULATION INCREMENT FROM ',
| 1pe8.2,' ITERATIONS',/,
| ' ',10x,' 8. RESET ALL TO DEFAULT VALUES',/,
| ' ',10x,' 9. EXIT',5(/),
| ' ',10x,'Enter selection (1-9): ',$)
C20--------BRANCH TO APPROPRIATE SECTION--------------------------------
GO TO (210,220,230,240,250,260,270,280,300),inum
GO TO 300 !Improper input or <RETURN>.
210 CONTINUE !Change time step limiting const 1 section.
PRINT 2100
2100 FORMAT (' ','Enter value for time step limiting constant 1: ',$)
READ (5,*) cy
2101 FORMAT (f5.3)
GO TO 400
220 CONTINUE !Change time step limiting const 2 section.
PRINT 2200
2200 FORMAT (' ','Enter value for time step limiting constant 2: ',$)
READ (5,*) ct
GO TO 400
230 CONTINUE !Change initial time step section.
PRINT 2300
2300 FORMAT (' ','Enter value for initial time step: ',$)
READ (5,*) dt1
GO TO 400
240 CONTINUE !Change initial temperature section.
PRINT 2400
2400 FORMAT (' ','Enter value for initial temperature: ',$)
READ (5,*) t9i
GO TO 400
250 CONTINUE !Change final temperature section.
PRINT 2500
2500 FORMAT (' ','Enter value for final temperature: ',$)
READ (5,*) t9f
GO TO 400
260 CONTINUE !Change smallest abundances allowed section.
PRINT 2600
2600 FORMAT (' ','Enter value for smallest abundances allowed: ',$)
READ (5,*) ytmin
GO TO 400
270 CONTINUE !Change accumulation increment section.
PRINT 2700
2700 FORMAT (' ','Enter value for accumulation increment: ',$)
READ (5,*) inc
GO TO 400
280 CONTINUE !Reset all to default values section.
cy = cy0 !Time step limiting constant on abundances.
ct = ct0 !Time step limiting constant on temperature.
dt1 = dt0 !Time step.
t9i = t9i0 !Initial temperature.
t9f = t9f0 !Final temperature.
ytmin = ytmin0 !Smallest abundances allowed.
inc = inc0 !Accumulation increment.
PRINT 2800
2800 FORMAT (' ','All values reset to default - Press <RETURN> ',
| 'to continue: ',$)
READ (5,*)
GO TO 400
300 CONTINUE !Exit section.
RETURN
C----------COMMON AREAS.
COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
C----------DEFAULT MODEL PARAMETERS.
DOUBLE PRECISION c0(3) !Default c.
DOUBLE PRECISION cosmo0 !Default cosmological constant.
DOUBLE PRECISION xi0(3) !Default neutrino degeneracy parameters.
C----------EARLY UNIVERSE MODEL PARAMETERS.
DOUBLE PRECISION c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
DOUBLE PRECISION cosmo !Cosmological constant.
DOUBLE PRECISION xi(3) !Neutrino degeneracy parameters.
1000 FORMAT (8(/),
| ' ',24x,'SET MODEL PARAMETERS SELECTION',/,
| ' ',24x,'--- ----- ---------- ---------',//,
| ' ',10x,' 1. CHANGE GRAVITATIONAL CONSTANT FROM ',
| 1pe10.3,/,
| ' ',10x,' 2. CHANGE NEUTRON LIFETIME FROM ',
| 1pe10.3,' SECONDS',/,
| ' ',10x,' 3. CHANGE NUMBER OF NEUTRINO SPECIES FROM ',
| 1pe10.3,/,
| ' ',10x,' 4. CHANGE FINAL BARYON-TO-PHOTON RATIO FROM ',
| 1pe10.3,/,
| ' ',10x,' 5. CHANGE COSMOLOGICAL CONSTANT FROM ',
| 1pe10.3,/,
| ' ',10x,' 6. CHANGE XI-ELECTRON FROM ',
| 1pe10.3,/,
| ' ',10x,' 7. CHANGE XI-MUON FROM ',
| 1pe10.3,/,
| ' ',10x,' 8. CHANGE XI-TAUON FROM ',
| 1pe10.3,/,
| ' ',10x,' 9. RESET ALL TO DEFAULT VALUES',/,
| ' ',10x,'10. EXIT',4(/),
| ' ',10x,' Enter selection (1-10): ',$)
C20--------BRANCH TO APPROPRIATE SECTION---------------------------------
GO TO (210,220,230,240,250,260,270,280,290,300),inum
GO TO 300 !Improper input or <RETURN>.
210 CONTINUE !Change gravitational constant section.
PRINT 2100
2100 FORMAT (' ','Enter value for variation of gravitational ',
| 'constant: ',$)
READ (5,*) c(1)
GO TO 400
220 CONTINUE !Change neutron lifetime section.
print 2200
2200 FORMAT (' ','Enter value for neutron lifetime (sec): ',$)
READ (5,*) c(2)
GO TO 400
230 CONTINUE !Change number of neutrino species section.
print 2300
2300 FORMAT (' ','Enter value for number of neutrino species: ',$)
READ (5,*) c(3)
GO TO 400
240 CONTINUE !Change baryon-to-photon ratio section.
print 2400
2400 FORMAT (' ','Enter value for baryon-to-photon ratio: ',$)
READ (5,*) eta1
GO TO 400
250 CONTINUE !Change cosmological constant section.
print 2500
2500 FORMAT (' ','Enter value for cosmological constant: ',$)
READ (5,*) cosmo
GO TO 400
260 CONTINUE !Change neutrino degeneracy section.
print 2600
2600 FORMAT (' ','Enter value for xi electron: ',$)
READ (5,*) xi(1)
GO TO 400
270 CONTINUE !Change neutrino degeneracy section.
print 2700
2700 FORMAT (' ','Enter value for xi muon: ',$)
READ (5,*) xi(2)
GO TO 400
280 CONTINUE !Change neutrino degeneracy section.
print 2800
2800 FORMAT (' ','Enter value for xi tauon: ',$)
READ (5,*) xi(3)
IF ((xi(3).ne.0.).and.(c(3).lt.3.)) THEN
c(3) = 3.
print 2802
2802 FORMAT (' ','Number of neutrinos set to 3')
print 2804
2804 FORMAT (' ','Press <RETURN> to continue: ',$)
READ (5,*)
END IF
GO TO 400
290 CONTINUE !Reset all to default values section.
c(1) = c0(1)
c(2) = c0(2)
c(3) = c0(3)
cosmo = cosmo0
xi(1) = xi0(1)
xi(2) = xi0(2)
xi(3) = xi0(3)
eta1 = eta0
print 2900
2900 FORMAT (' ','All values reset to default - Press <RETURN> ',
| 'to continue: ',$)
READ (5,*)
GO TO 400
300 CONTINUE !Exit section.
RETURN
C----------COMMON AREAS.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr/ dt1,eta1 !Variational parameters.
COMMON /check1/ itime !Computation location.
COMMON /runopt/ irun,isize,jsize !Run options.
C----------MODEL PARAMETERS.
DOUBLE PRECISION eta1 !Baryon-to-photon ratio.
DOUBLE PRECISION c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
DOUBLE PRECISION cosmo !Cosmological constant.
DOUBLE PRECISION xi(3) !Neutrino degeneracy parameters.
C----------RUN OPTION.
INTEGER irun !Run network size.
INTEGER isize !Number of nuclides in computation.
INTEGER jsize !Number of reactions in computation.
C----------USER INTERACTION VARIABLES.
DOUBLE PRECISION rnumb1 !Run parameter for outer loop.
DOUBLE PRECISION rnumb2 !Run parameter for middle loop.
DOUBLE PRECISION rnumb3 !Run parameter for inner loop.
DOUBLE PRECISION rnum1(3) !Run parameter starting value.
DOUBLE PRECISION rnum2(3) !Run parameter end value.
DOUBLE PRECISION rnum3(3) !Run parameter increment.
INTEGER inumb !Selection number.
INTEGER inum(3) !Selection number.
INTEGER jnum !Number of loopings to be done.
INTEGER knum !Number of loopings rejected.
INTEGER lnumb1 !Run parameter for outer loop.
INTEGER lnumb2 !Run parameter for middle loop.
INTEGER lnumb3 !Run parameter for inner loop.
INTEGER lnum(3) !Run parameter end value.
INTEGER lchose !User response (alphanumeric).
C----------FLAG AND LABELS.
INTEGER itime !Computation location.
CHARACTER*22 vtype(8) !Label for quantities being varied.
| 'gravitational constant',
| 'neutron lifetime ',
| '# of neutrino species ',
| 'cosmological constant ',
| 'xi-electron ',
| 'xi-muon ',
| 'xi-tauon '/
1000 FORMAT (8(/),
| ' ',32x,'RUN SELECTION',/,
| ' ',32x,'--- ---------',//,
| ' ',27x,' 1. SET RUN NETWORK',/,
| ' ',27x,' 2. GO',/,
| ' ',27x,' 3. DO MULTIPLE RUNS',/,
| ' ',27x,' 4. EXIT',10(/),
| ' ',27x,' Enter selection (1-4): ',$)
C20--------BRANCH TO APPROPRIATE SECTION------------------------------------
GO TO (210,220,230,240),inumb
GO TO 240 !Improper input or <RETURN>.
C21--------SET RUN NETWORK SECTION--------------------------------------
210 CONTINUE
print 2100
2100 FORMAT (' ','Enter network size (1-26 nuclides (default); ',
| '2-18; 3-9): ',$)
READ (5,*) inumb !Read in selection number.
IF ((inumb.ne.1).and.(inumb.ne.2).and.(inumb.ne.3)) inumb = 1 !Default.
IF (inumb.ne.irun) THEN !Run network changed from previously.
irun = inumb !Run network size selection.
END IF
IF (irun.eq.1) THEN !Maximal network size.
isize = nnuc
jsize = nrec
ELSE
IF (irun.eq.2) THEN !Abridged network size.
isize = lnuc
jsize = lrec
ELSE
IF (irun.eq.3) THEN !Minimal network size.
isize = knuc
jsize = krec
END IF
END IF
END IF !(irun.eq.1)
print 2104, irun
2104 FORMAT (' ','Run network set to ',i1,' - Press <RETURN> ',
| 'to continue: ',$)
READ (5,*)
GO TO 300
C22--------GO SECTION--------------------------------------
220 CONTINUE
print 2200
2200 FORMAT (' ','Begin computation run....')
itime = 3
CALL check !Call interface subr before computation.
CALL driver !Do nucleosynthesis computation.
itime = 8
CALL check !Call interface subr after computation.
print 2202
2202 FORMAT (' ','Computation completed - Press <RETURN> to ',
| 'continue: ',$)
READ (5,*)
GO TO 300
C..........GET NUMBER OF LOOPINGS.
230 CONTINUE
print 2300
2300 FORMAT (' ','Enter the number of loopings to be done (1 ',
| '(default); 2; 3): ',$)
READ (5,*) jnum !Read in number of loopings to be done.
IF ((jnum.ne.1).and.(jnum.ne.2).and.(jnum.ne.3)) THEN
jnum = 1 !Default number of loopings.
END IF
knum = 0. !No loopings rejected for now.
DO i = 1,3
IF (i.gt.jnum) THEN
rnum1(i) = 0. !Initialize initial parameter.
rnum2(i) = 0. !Initialize terminal parameter.
rnum3(i) = 1. !Initialize incremental parameter.
inum(i) = 0 !Initialize selection number.
ELSE
2302 FORMAT (8(/),
| ' ',30x,'QUANTITY TO VARY',/,
| ' ',30x,'-------- -- ----',//,
| ' ',25x,' 1. ETA (LOGRITHMIC VARIATION)',/,
| ' ',25x,' 2. G (LINEAR VARIATION)',/,
| ' ',25x,' 3. TAU (LINEAR VARIATION)',/,
| ' ',25x,' 4. # NEUTRINOS (LINEAR VARIATION)',/,
| ' ',25x,' 5. LAMBDA (LINEAR VARIATION)',/,
| ' ',25x,' 6. XI-ELECTRON (LINEAR VARIATION)',/,
| ' ',25x,' 7. XI-MUON (LINEAR VARIATION)',/,
| ' ',25x,' 8. XI-TAUON (LINEAR VARIATION)',/,
| ' ',25x,' 9. NO SELECTION',5(/),
| ' ',25x,' Enter selection (1-9): ',$)
READ (5,1001) inum(i)
IF ((inum(i).lt.1).or.(inum(i).gt.8)) THEN !No selection made.
print 2304
2304 FORMAT (' ','No selection made - Reduce number of ',
| 'loopings by one',/,
| ' ','Press <RETURN> to continue: ',$)
READ (5,*)
knum = knum + 1 !Step up number of loopings rejected.
rnum1(i) = 0. !Initialize initial parameter.
rnum2(i) = 0. !Initialize terminal parameter.
rnum3(i) = 1. !Initialize incremental parameter.
inum(i) = 0 !Initialize selection number.
ELSE !((inum(i).ge.1).and.(inum(i).le.8))
..........INPUT RUN SPECIFICATIONS.
231 CONTINUE
print 2306
2306 FORMAT (' ','Enter minimum value: ',$)
READ (5,*) rnum1(i) !Read in starting value.
print 2308
2308 FORMAT (' ','Enter maximum value: ',$)
READ (5,*) rnum2(i) !Read in terminating value.
232 CONTINUE
print 2310
2310 FORMAT (' ','Enter increment: ',$)
READ (5,*) rnum3(i) !Read in incremental value.
IF (rnum3(i).eq.0.) THEN !Trouble with 0 division later on.
print 2312
2312 FORMAT (' ','Zero increment not allowed: trouble with ',
| 'dividing by zero')
GO TO 232
END IF
print 2314, rnum1(i), rnum2(i), rnum3(i) !Display input info.
2314 FORMAT (' ','Run from ',1pe12.5,' to ',1pe12.5,
| ' in increments of ',1pe12.5)
print 2316
2316 FORMAT (' ','Confirm these values (1=Y or 0=N): ',$)
READ (5,*) lchose !Get confirmation.
2301 FORMAT (a1)
IF (lchose.eq.0) GO TO 231
END IF !((inum(i).lt.1).or.(inum(i).gt.8))
END IF !(i.gt.jnum)
END DO !i = 1,3
jnum = jnum-knum !Number of valid loopings.
IF (jnum.ne.0) THEN !Run requested.
..........PRINTOUT QUANTITY TO VARY, RUN SPECIFICATIONS.
DO l = 1,jnum+knum !Check all loopings.
IF (inum(l).ne.0) THEN !Proper selection was made.
print 2318, vtype(inum(l)),rnum1(l), !Display run params.
..........GET LOGS OF eta VALUES FOR LOGRITHMIC INCREMENTATION.
IF (inum(l).eq.1) THEN !Work with exponents for eta increments.
rnum1(l) = log10(rnum1(l))
rnum2(l) = log10(rnum2(l))
END IF
..........COMPUTE NUMBER OF RUNS FOR EACH LOOPING.
DO l = 1,3
lnum(l) = nint((rnum2(l)-rnum1(l)+rnum3(l))/rnum3(l))
END DO
..........DO MULTIPLE RUNS.
print 2200 !Inform user of beginning of computation.
DO lnumb1 = 0,lnum(1)-1 !Outer loop.
rnumb1 = rnum1(1)+float(lnumb1)*rnum3(1) !Value of param for run.
IF ((inum(1).ge.1).and.(inum(1).le.8)) THEN
IF (inum(1).eq.1) THEN
eta1 = 10**rnumb1 !Vary baryon-to-photon ratio.
ELSE
qvary(inum(1)-1) = rnumb1 !Vary other quantities.
END IF
END IF
DO lnumb2 = 0,lnum(2)-1 !Middle loop.
rnumb2 = rnum1(2)+float(lnumb2)*rnum3(2) !Value of param for run.
IF ((inum(2).ge.1).and.(inum(2).le.8)) THEN
IF (inum(2).eq.1) THEN
eta1 = 10**rnumb2 !Vary baryon-to-photon ratio.
ELSE
qvary(inum(2)-1) = rnumb2 !Vary other quantities.
END IF
END IF
DO lnumb3 = 0,lnum(3)-1 !Inner loop.
rnumb3 = rnum1(3)+float(lnumb3)*rnum3(3) !Value of parameter.
IF ((inum(3).ge.1).and.(inum(3).le.8)) THEN
IF (inum(3).eq.1) THEN
eta1 = 10**rnumb3 !Vary baryon-to-photon ratio.
ELSE
qvary(inum(3)-1) = rnumb3 !Vary other quantities.
END IF
END IF
itime = 3
CALL check !Check interface subr before computation.
CALL driver !Do nucleosynthesis computation.
itime = 8
CALL check !Check interface subroutine after computation.
END DO !lnumb3 = 0,lnum(3)-1
END DO !lnumb2 = 0,lnum(2)-1
END DO !lnumb1 = 0,lnum(1)-1
print 2202 !Inform user of completion of computation.
2320 FORMAT (' ','No selection made - ',
| 'Press <RETURN> to continue: ',$)
END IF !(jnum.ne.0)
READ (5,*)
GO TO 300
C30--------GO BACK TO MENU-----------------------------------------------
300 CONTINUE
GO TO 100
END
C----------COMMON AREAS.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /flags/ ltime,is,ip,it,mbad !Flags, counters.
COMMON /outdat/ xout,thmout,t9out,tout,dtout, !Output data.
C----------COMPUTATION SETTINGS.
DOUBLE PRECISION cy !Time step limiting constant on abundances.
DOUBLE PRECISION ct !Time step limiting constant on temperature.
DOUBLE PRECISION t9i !Initial temperature (in 10**9 K).
DOUBLE PRECISION t9f !Final temperature (in 10**9 K).
DOUBLE PRECISION ytmin !Smallest abundances allowed.
C----------EARLY UNIVERSE MODEL PARAMETERS.
DOUBLE PRECISION c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
DOUBLE PRECISION cosmo !Cosmological constant.
DOUBLE PRECISION xi(3) !Neutrino degeneracy parameters.
C----------OUTPUT ARRAYS.
DOUBLE PRECISION xout(itmax,nnuc) !Nuclide mass fractions.
DOUBLE PRECISION thmout(itmax,6) !Thermodynamic variables.
DOUBLE PRECISION t9out(itmax) !Temperature (in units of 10**9 K).
DOUBLE PRECISION tout(itmax) !Time.
DOUBLE PRECISION dtout(itmax) !Time step.
DOUBLE PRECISION etaout(itmax) !Baryon-to-photon ratio.
DOUBLE PRECISION hubout(itmax) !Expansion rate.
C----------OUTPUT FILE STATUS.
INTEGER nout !Number of output requests.
LOGICAL outfile !Indicates if output file used.
1000 FORMAT (8(/),
| ' ',30x,'OUTPUT SELECTION',/,
| ' ',30x,'------ ---------',//,
| ' ',25x,' 1. REQUEST OUTPUT FILE',/,
| ' ',25x,' 2. REQUEST OUTPUT ON SCREEN',/,
| ' ',25x,' 3. EXIT',11(/),
| ' ',25x,' Enter selection (1-3): ',$)
..........BRANCH TO APPROPRIATE SECTION.
GO TO (200,300,400),inum
GO TO 400 !Improper input or <RETURN>.
C20--------REQUEST OUTPUT SECTION--------------------------------------
200 CONTINUE
PRINT *, 'Saving output to: ', output_file
..........PRINT CAPTION.
nout = nout + 1 !Keep track of number of output requests.
IF (nout.eq.1) THEN
write(2,2000)
2000 FORMAT (54x,'NUCLIDE ABUNDANCE YIELDS',/,
| 54x,'------- --------- ------',//)
END IF
write(2,2002) cy,ct,t9i,t9f,ytmin
2002 FORMAT (' Computational parameters:',/,
| ' cy = ',f5.3,'/ ct = ',f5.3,
| '/ initial temp = ',1pe8.2,
| '/ final temp = ',1pe8.2,
| '/ smallest abundances allowed = ',1pe8.2)
write(2,2004) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
2004 FORMAT (' Model parameters:',/,
| ' g = ',f5.2,'/ tau = ',f6.2,
| '/ # nu = ',f5.2,'/ lambda = ',1pe10.3,
| '/ xi-e = ',e10.3,'/ xi-m = ',e10.3,
| '/ xi-t = ',e10.3,/)
2006 FORMAT (4x,'Temp',8x,'N/H',10x,'P',10x,'D/H',9x,'T/H',8x,
| 'He3/H',8x,'He4',8x,'Li6/H',7x,'Li7/H',7x,
| 'Be7/H',6x,'Li8/H&up',/,132('-'))
DO j = 1,it
write(2,2008) t9out(j),(xout(j,i),i=1,10)
2008 FORMAT (1pe10.3,1p10e12.3)
END DO
2010 FORMAT (' ',/,4x,'Temp',9x,'T',10x,'rhog',8x,'rhoe',7x,
| 'rhone',8x,'rhob',8x,'phie',9x,'dt',9x,
| 'eta',10x,'H',/,132('-'))
DO j = 1,it
write(2,2012) t9out(j),tout(j),(thmout(j,i),i=1,5),dtout(j),
| etaout(j),hubout(j)
2012 FORMAT (1pe10.3,9e12.3)
END DO
write(2,2014)
2014 FORMAT (///)
outfile = .true. !Output file requested.
print 2016
2016 FORMAT (' ','Output file requested - Press <RETURN> to ',
| 'continue: ',$)
READ (5,*)
GO TO 500
3000 FORMAT (8(/),
| ' ',26x,'SCREEN OUTPUT SELECTION',/,
| ' ',26x,'------ ------ ---------',//,
| ' ',25x,' 1. DISPLAY D,T,HE3,HE4,LI7',/,
| ' ',25x,' 2. DISPLAY N,P,LI6,BE7,LI8&UP',/,
| ' ',25x,' 3. DISPLAY RHOG,RHOE,RHONE,RHOB',/,
| ' ',25x,' 4. DISPLAY T,DT,PHIE,ETA,H',/,
| ' ',25x,' 5. EXIT',9(/),
| ' ',25x,' Enter selection (1-5): ',$)
..........READ IN SELECTION NUMBER.
READ (5,1001) inum
GO TO (310,320,330,340,350),inum
GO TO 350 !Improper input or <RETURN>.
3100 FORMAT (' ','Computational parameters:',/,
| ' ',' cy = ',f5.3,'/ ct = ',f5.3,
| '/ initial temp = ',1pe8.2,
| '/ final temp = ',1pe8.2,/,
| ' ',' smallest abundances allowed = ',1pe8.2)
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3102 FORMAT (' ','Model parameters:',/,
| ' ',' g = ',f5.2,'/ tau = ',f6.2,
| '/ # nu = ',f5.2,'/ lambda = ',1pe10.3,/,
| ' ',' xi-e = ',e10.3,'/ xi-m = ',e10.3,
| '/ xi-t = ',e10.3,/)
3104 FORMAT (4x,'Temp',8x,'D/H',9x,'T/H',8x,'He3/H',8x,
| 'He4',8x,'Li7/H',/,' ',80('-'))
DO j = 1,it
print 3106, t9out(j),(xout(j,i),i=3,6),xout(j,8)
3106 FORMAT (1pe10.3,1p5e12.3)
END DO
print 2014
print 3108
3108 FORMAT (' ','Press <RETURN> to continue: ',$)
READ (5,*)
GO TO 360
320 CONTINUE !Display n,p,li6,be7,li8&up.
..........PRINT CAPTION.
print 2014
print 3100, cy,ct,t9i,t9f,ytmin
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3204 FORMAT (4x,'Temp',8x,'N/H',10x,'P',9x,
| 'Li6/H',7x,'Be7/H',6x,'Li8/H&up',/,' ',80('-'))
DO j = 1,it
print 3106, t9out(j),(xout(j,i),i=1,2),xout(j,7),
| (xout(j,i),i=9,10)
END DO
print 2014
print 3108
READ (5,*)
GO TO 360
330 CONTINUE !Display rhog,rhoe,rhone,rhob.
..........PRINT CAPTION.
print 2014
print 3100, cy,ct,t9i,t9f,ytmin
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3304 FORMAT (4x,'Temp',8x,'rhog',8x,'rhoe',7x,'rhone',8x,'rhob',
| /,' ',80('-'))
DO j = 1,it
print 3306, t9out(j),(thmout(j,i),i=1,4)
3306 FORMAT (1pe10.3,4e12.3)
END DO
print 2014
print 3108
READ (5,*)
GO TO 360
340 CONTINUE !Display t,dt,phie,eta,hubcst.
..........PRINT CAPTION.
print 2014
print 3100, cy,ct,t9i,t9f,ytmin
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3404 FORMAT (4x,'Temp',8x,'time',8x,'phie',9x,'dt',9x,'eta',10x,
| 'H',/,' ',80('-'))
DO j = 1,it
print 3406, t9out(j),tout(j),thmout(j,5),dtout(j),
| etaout(j),hubout(j)
3406 FORMAT (1pe10.3,5e12.3)
END DO
print 2014
print 3108
READ (5,*)
GO TO 360
350 CONTINUE !Exit.
GO TO 500
360 CONTINUE
GO TO 300