C----------PARAMETERS.
PARAMETER (ir=1) !Input unit number.
PARAMETER (iw=1) !Output unit number.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
C----------COMMON AREAS.
COMMON /recpr0/ reacpr !Reaction parameter values.
COMMON /recpr/ iform,ii,jj,kk,ll,rev,q9 !Reaction parameter names.
COMMON /rates/ f,r !Reaction rates.
COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
COMMON /check1/ itime !Computation location.
COMMON /runopt/ irun,isize,jsize !Run options.
COMMON /outopt/ nout,outfile !Output option.
C----------REACTION PARAMETERS.
INTEGER iform(nrec) !Reaction type code (1-11).
INTEGER ii(nrec) !Incoming nuclide type (1-26).
INTEGER jj(nrec) !Incoming light nuclide type (1-6).
INTEGER kk(nrec) !Outgoing light nuclide type (1-6).
INTEGER ll(nrec) !Outgoing nuclide type (1-26).
REAL rev(nrec) !Reverse reaction coefficient.
REAL q9(nrec) !Energy released in reaction.
C----------REACTION RATES.
REAL f(nrec) !Forward reaction rate coefficients.
REAL r(nrec) !Reverse reaction rate coefficients.
C----------DEFAULT COMPUTATION PARAMETERS.
REAL cy0 !Default cy.
REAL ct0 !Default ct.
REAL t9i0 !Default t9i.
REAL t9f0 !Default t9f.
REAL ytmin0 !Default ytmin.
INTEGER inc0 !Default accumulation increment.
C----------COMPUTATIONAL PARAMETERS.
REAL cy !Time step limiting constant on abundances.
REAL ct !Time step limiting constant on temperature.
REAL t9i !Initial temperature (in 10**9 K).
REAL t9f !Final temperature (in 10**9 k).
REAL ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
C----------DEFAULT MODEL PARAMETERS.
REAL c0(3) !Default c.
REAL cosmo0 !Default cosmological constant.
REAL xi0(3) !Default neutrino degeneracy parameters.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
REAL cosmo !Cosmological constant.
REAL xi(3) !Neutrino degeneracy parameters.
C----------DEFAULT VARIATIONAL PARAMETERS.
REAL dt0 !Default initial time step.
REAL eta0 !Default baryon-to-photon ratio.
C----------RUN OPTION.
INTEGER irun !Run network size.
INTEGER isize !Number of nuclides in computation.
INTEGER jsize !Number of reactions in computation.
C----------OUTPUT FILE STATUS.
INTEGER nout !Number of output requests.
LOGICAL outfile !Indicates if output file used.
C--------OPEN FILES AND PRINT GREETING-----------------------------
OPEN (unit=2, file='nuc123.dat', status='unknown') !Output file.
itime = 1 !Time = beginning of program.
CALL check !Check interface subroutine.
PRINT 1000
1000 FORMAT (6(/),
| 2(' ',4x,'NN',6x,'NN UU',6x,'UU',4x,8('C'),6x,'11',8x,
| 6('2'),6x,6('3'),/),
| 2(' ',4x,'NN',6x,'NN UU',6x,'UU CC',12x,'1111',6x,
| '22',6x,'22 33',6x,'33',/),
| 2(' ',4x,'NNNN NN UU',6x,'UU CC',14x,'11',14x,
| '22',10x,'33',/),
| 2(' ',4x,'NN NN NN UU',6x,'UU CC',14x,'11',12x,
| '22',10x,'33',/),
| 2(' ',4x,'NN NNNN UU',6x,'UU CC',14x,'11',10x,
| '22',14x,'33',/),
| 2(' ',4x,'NN',6x,'NN UU',6x,'UU CC',14x,'11',8x,
| '22',8x,'33',6x,'33',/),
| 2(' ',4x,'NN',6x,'NN ',10('U'),4x,8('C'),4x,6('1'),4x,
| 10('2'),4x,6('3'),/),/,
| ' ',26x,'WRITTEN BY LAWRENCE KAWANO',///,
| ' ','(Press <RETURN> to continue): ',$)
..........READ IN REACTION PARAMETERS.
iform(i) = int(reacpr(i,2))!Reaction type.
ii(i) = int(reacpr(i,3))!Incoming nuclide type.
jj(i) = int(reacpr(i,4))!Incoming nuclide type.
kk(i) = int(reacpr(i,5))!Outgoing nuclide type.
ll(i) = int(reacpr(i,6))!Outgoing nuclide type.
rev(i) = reacpr(i,7) !Reverse reaction coefficient.
q9(i) = reacpr(i,8) !Energy released.
..........SET RUN OPTIONS TO DEFAULT.
END DO
irun = 1 !Do full run.
isize = nnuc !Use all 26 nuclides.
jsize = nrec !Use all 88 reactions.
..........SET OUTPUT OPTION TO DEFAULT.
nout = 0 !No output requests.
outfile = .false. !Output file not used.
..........SET VALUES TO DEFAULT.
cy = cy0 !Time step limiting constant on abundances.
ct = ct0 !Time step limiting constant on temperature.
t9i = t9i0 !Initial temperature.
t9f = t9f0 !Final temperature.
ytmin = ytmin0 !Smallest abundances allowed.
inc = inc0 !Accumulation increment.
c(1) = c0(1) !Variation of gravitational constant.
c(2) = c0(2) !Neutron lifetime.
c(3) = c0(3) !Number of neutrino species.
cosmo = cosmo0 !Cosmological constant.
xi(1) = xi0(1) !Electron degeneracy parameter.
xi(2) = xi0(2) !Muon degeneray parameter.
xi(3) = xi0(3) !Tauon degeneracy parameter.
3000 FORMAT (8(/),
| ' ',32x,'MENU SELECTION',/,
| ' ',32x,'---- ---------',//,
| ' ',24x,'1. HELP',/,
| ' ',24x,'2. SET COMPUTATION PARAMETERS',/,
| ' ',24x,'3. SET MODEL PARAMETERS',/,
| ' ',24x,'4. RUN',/,
| ' ',24x,'5. OUTPUT',/,
| ' ',24x,'6. EXIT',8(/),
| ' ',24x,'Enter selection (1-6): ',$)
C40--------BRANCH TO APPROPRIATE SECTION--------------------------------
GO TO (410,420,430,440,450,460),inum
GO TO 460 !Improper input or <RETURN>.
410 CONTINUE !Help section.
CALL help
GO TO 500
420 CONTINUE !Set computation parameters section.
CALL setcom
GO TO 500
430 CONTINUE !Set model parameters section.
CALL setmod
GO TO 500
440 CONTINUE !Run section.
itime = 2 !Time = beginning of run section.
CALL check !Check interface subroutine.
CALL run
itime = 9 !Time = end of run section.
CALL check !Check interface subroutine.
GO TO 500
450 CONTINUE !Output section.
CALL output
GO TO 500
460 CONTINUE !Exit section.
IF (outfile) THEN
close (unit=2,status='keep') !Close output file.
ELSE
CLOSE (unit=2,status='delete') !File not used - dispose.
END IF
cccccccccc CLOSE (unit=1) !End terminal session.
itime = 10 !Time = end of program.
CALL check !Check interface subroutine.
STOP
1000 FORMAT (8(/),
| ' ',32x,'HELP SELECTION',/,
| ' ',32x,'---- ---------',//,
| ' ',24x,'1. INTRODUCTION',/,
| ' ',24x,'2. SETTING UP A RUN',/,
| ' ',24x,'3. RUNNING THE PROGRAM',/,
| ' ',24x,'4. OUTPUT OPTIONS',/,
| ' ',24x,'5. GENERAL METHOD OF COMPUTATION',/,
| ' ',24x,'6. USING THE INTERFACE SUBROUTINE',/,
| ' ',24x,'7. EXIT',7(/),
| ' ',24x,'Enter selection (1-7): ',$)
C20--------BRANCH TO APPROPRIATE SECTION---------------------------------
GO TO (210,220,230,240,250,260,270),inum
GO TO 270 !Improper input or <RETURN>.
C21--------INTRODUCTION SECTION------------------------------------------
210 CONTINUE !Setting up a run section.
PRINT 2100
2100 FORMAT (/,
| ' ',31x,'INTRODUCTION',/,
| ' ',31x,'------------',2(/),
| ' ','Welcome to the wonderful world of primor',
| 'dial nucleosynthesis. NUC123 is a ',/,
| ' ','FORTRAN program designed to provide the ',
| 'early universe researcher with the tools',/,
| ' ','necessary for the investigation of primo',
| 'rdial nucleosynthesis. Its menu-driven ',/,
| ' ','interface allows the user to first set c',
| 'omputation parameters (such as the time ',/,
| ' ','step) and model parameters (such as the ',
| 'neutron lifetime and number of neutri- ',/,
| ' ','nos) before doing single runs or multipl',
| 'e runs (in which desired model parame- ',/,
| ' ','ters are varied over a desired range.) ',
| 'After the run, the user can utilize the ',/,
| ' ','menu to either produce an output file or',
| ' to view the most recent run on the ',/,
| ' ','screen. The program comes with an empty',
| ' subroutine CHECK into which the user ',/,
| ' ','may wish to put additional code to add t',
| 'o the computation in an original manner.',10(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
C22--------SET UP RUN SECTION------------------------------------------
220 CONTINUE !Setting up a run section.
PRINT 2200
2200 FORMAT (/,
| ' ',29x,'SETTING UP A RUN',/,
| ' ',29x,'------- -- - ---',2(/),
| ' ','I. Setting computation parameters. ',/,
| ' ',' The accuracy of the computation and t',
| 'he relevant temperature region can be ',/,
| ' ',' set by the following parameters: ',/,
| ' ',' A. Time step limiting constant 1 (d',
| 'efault value of 0.3) ',/,
| ' ',' B. Time step limiting constant 2 (d',
| 'efault value of 0.03) ',/,
| ' ',' C. Initial time step (default value',
| ' of 10**-4) ',/,
| ' ',' D. Initial temperature (default val',
| 'ue of 10**2) ',/,
| ' ',' This is the temperature at the be',
| 'ginning of the run in units of 10**9 K ',/,
| ' ',' E. Final temperature (default value',
| ' of 10**-2) ',/,
| ' ',' This is the termination temperatu',
| 're of the run in units of 10**9 K ',/,
| ' ',' F. Smallest abundances allowed (def',
| 'ault value of 10**-25) ',/,
| ' ',' Elemental abundances are not allo',
| 'wed to drop below this value ',/,
| ' ',' G. # of iterations for each accumula',
| 'tion (default value of 30) ',/,
| ' ',' This is the number of iterations ',
| 'before values are put in an output array',6(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2202
2202 FORMAT (/,
| ' ','II. Setting model parameters. ',/,
| ' ',' Default values here give what is know',
| 'n as the standard model with best guess ',/,
| ' ',' figure on the neutron lifetime of 889',
| '.541 seconds. Nonstandard scenarios can',/,
| ' ',' be investigated by varying the follow',
| 'ing parameters: ',/,
| ' ',' A. The gravitational constant ',/,
| ' ',' (The default value of one here gi',
| 'ves the usual 6.6720e-8 dyne*cm**2/g**2)',/,
| ' ',' B. Neutron life-time (default value',
| ' of 889. seconds) ',/,
| ' ',' C. Number of neutrino species (defa',
| 'ult value of 3 light neutrinos) ',/,
| ' ',' D. Final baryon-to-photon ratio (se',
| 't to log(eta) = -9.5) ',/,
| ' ',' E. Cosmological constant (default v',
| 'alue of 0) ',/,
| ' ',' F. Neutrino degeneracy parameters (',
| 'default values all 0) ',/,
| ' ',' There are 3 separate parameters f',
| 'or the electron, muon, and tau neutrinos',11(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
C23--------RUN PROGRAM SECTION------------------------------------------
230 CONTINUE !Running the program section.
PRINT 2300
2300 FORMAT (/,
| ' ',28x,'RUNNING THE PROGRAM',/,
| ' ',28x,'------- --- -------',2(/),
| ' ','I. Setting run speed. ',/,
| ' ',' The code can be run at 3 different se',
| 'ttings of speed. The running of the ',/,
| ' ',' code can be speeded up by reducing th',
| 'e number of nuclides and reactions. The',/,
| ' ',' complete computation takes into accou',
| 'nt the following nuclides: n, p, d, t, ',/,
| ' ',' He3, He4, Li6, Li7, Be7, Li8, B8, Be9',
| ',B10, B11, C11, B12, C12, N12, C13, N13,',/,
| ' ',' C14, N14, O14, N15, O15, and O16. ',/,
| ' ',' The given CPU percentages and abundan',
| 'ce variations are with regard to a ',/,
| ' ',' single run with all default parameter',
| ' values. ',/,
| ' ',' A. 26 nuclides, 88 reactions (defaul',
| 't) ',/,
| ' ',' nuclides from n to O16 ',/,
| ' ',' B. 18 nuclides, 60 reactions ',/,
| ' ',' nuclides from n to N12 ',/,
| ' ',' (63% CPU time, variation = .1%) ',/,
| ' ',' C. 9 nuclides, 25 reactions ',/,
| ' ',' nuclides from n to Be7 ',/,
| ' ',' (20% CPU time, variation = .5%) ',4(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2302
2302 FORMAT (/,
| ' ','II. Do single run. ',/,
| ' ',' A. Interactive. ',/,
| ' ',' In an interactive session, the us',
| 'er can readily input the computational ',/,
| ' ',' and model parameters and begin th',
| 'e computation process. The run itself ',/,
| ' ',' is commenced when option 2, "GO",',
| ' in the "RUN" section is requested. ',//,
| ' ',' B. Batch. ',/,
| ' ',' To run the program in a batch mod',
| 'e, it must be altered slightly so that ',/,
| ' ',' the I/O takes place with files in',
| 'stead of a terminal. This is done by ',/,
| ' ',' setting different values for the ',
| 'input and output unit number parameters ',/,
| ' ',' "ir" and "iw" and assigning them ',
| 'to different files in NUC123. In the ',/,
| ' ',' file assigned the "ir" unit numbe',
| 'r, one must place the responses to the ',/,
| ' ',' queries of the program. ',10(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2304
2304 FORMAT (/,
| ' ','III. Do multiple runs. ',/,
| ' ',' A wide range of early universe model',
| 's can be covered by doing many runs ',/,
| ' ',' while one or more parameters are var',
| 'ied over a range of interest. The ',/,
| ' ',' parameters that can be varied are th',
| 'e following: ',/,
| ' ',' A. Eta ',
| ' - Logrithmic variation ',/,
| ' ',' B. Gravitational constant ',
| ' - Linear variation ',/,
| ' ',' C. Neutron lifetime ',
| ' - Linear variation ',/,
| ' ',' D. Number of neutrino species ',
| ' - Linear variation ',/,
| ' ',' E. Cosmological constant ',
| ' - Linear variation ',/,
| ' ',' F. Neutrino degeneracy parameters ',
| ' - Linear variation ',/,
| ' ',' 1. Electron neutrino ',/,
| ' ',' 2. Muon neutrino ',/,
| ' ',' 3. Tauon neutrino ',/,
| ' ',' At most 3 parameters can be varied. ',
| ' The first parameter inputted will be ',/,
| ' ',' will be varied in the outermost loop',
| ' and the third parameter inputted will ',/,
| ' ',' be varied in the innermost loop. ',7(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
ELSE
GO TO 300
END IF !(inum.eq.1)
C24--------OUTPUT OPTIONS SECTION----------------------------------
240 CONTINUE !Output options section.
PRINT 2400
2400 FORMAT (/,
| ' ',30x,'OUTPUT OPTIONS',/,
| ' ',30x,'------ -------',2(/),
| ' ','I. Request output file. ',/,
| ' ',' After a run, the user can request the',
| ' program to put the resulting numbers ',/,
| ' ',' into an output file. This can be don',
| 'e as many times as desired and all the ',/,
| ' ',' information will be put in one new fi',
| 'le under the name of "NUC123.DAT." If ',/,
| ' ',' there is no request during the entire',
| ' running of the program, this file is ',/,
| ' ',' not created. If an output file is re',
| 'quested after a multiple run, only the ',/,
| ' ',' information from the very last run wi',
| 'll be given. The output file will give ',/,
| ' ',' the computational and model parameter',
| 's for each run and will contain the ',/,
| ' ',' following information: ',/,
| ' ',' A. Temperatures in decreasing order ',/,
| ' ',' B. Abundances for n, p, d, t, He3, H',
| 'e4, Li6, Li7, Be7, and Li8 & up ',/,
| ' ',' (p and He4 are in mass fraction, ',
| 'the rest in ratios to the p abundance) ',/,
| ' ',' C. Time, time interval, chemical pot',
| 'ential of the electron ',/,
| ' ',' D. Energy densities for photons, ele',
| 'ctrons, electron neutrinos, and baryons ',/,
| ' ',' E. Baryon-to-photon ratio, expansion',
| ' rate of the universe ',5(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2402
2402 FORMAT (/,
| ' ','II. Request output on screen. ',/,
| ' ',' Instead of waiting to print out an o',
| 'utput file, the user can immediately ',/,
| ' ',' access the results of the latest run',
| ' by requesting the output on the ',/,
| ' ',' screen. There are four screens on e',
| 'ach of which are displayed the ',/,
| ' ',' computational and model parameters a',
| 'nd the temperature: ',/,
| ' ',' A. Abundances for d, t, He3, He4, a',
| 'nd Li7 ',/,
| ' ',' (He4 in mass fraction, rest as a',
| ' ratio with the p abundance) ',/,
| ' ',' B. Abundances for n, p, Li6, Be7, a',
| 'nd Li8 & up ',/,
| ' ',' (p in mass fraction, rest as a r',
| 'atio with the p abundance) ',/,
| ' ',' C. Energy densities for photons, el',
| 'ectrons, electron neutrinos, & baryons ',/,
| ' ',' D. Time, time interval, chemical po',
| 'tential of the electron, ',/,
| ' ',' baryon-to-photon ratio, and expa',
| 'nsion rate of the universe ',11(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
C25--------METHOD OF COMPUTATION SECTION--------------------------------
250 CONTINUE !General method of computation section.
PRINT 2500
2500 FORMAT (/,
| ' ',22x,'GENERAL METHOD OF COMPUTATION',/,
| ' ',22x,'------- ------ -- -----------',2(/),
| ' ','I. Time evolution algorithm. ',/,
| ' ',' The program utilizes a 2-point Runge-',
| 'Kutta scheme (located in subroutine ',/,
| ' ',' DRIVER) to time-evolve the temperatur',
| 'e, the quantity hv (the ratio of the ',/,
| ' ',' baryon density to T**3), the chemical',
| ' potential of the electron, and the ',/,
| ' ',' nuclide abundances. In the 2-point R',
| 'unge-Kutta routine, a variable v at time',/,
| ' ',' t0 (= v0) is evolved to a time t1 by ',
| 'adding to v0 the average of the ',/,
| ' ',' derivatives evaluated at t0 and at t1',
| ' multiplied by dt: ',/,
| ' ',' v1 = v0 + 0.5(dvdt(t0)+dvdt(t1)) ',/,
| ' ',' where dvdt(t1) is gotten by first fin',
| 'ding v1'' = v0 + dvdt(t0). The ',/,
| ' ',' derivatives of the nuclide abundances',
| ' are first computed and these are used ',/,
| ' ',' to find the derivatives of t9, hv, an',
| 'd phie (this is done in subroutine ',/,
| ' ',' DERIVS). To compute the time derivat',
| 'ives of the nuclide abundances, a matrix',/,
| ' ',' equation is set up (in subroutine SOL',
| ') and is solved (in subroutine EQSLIN) ',/,
| ' ',' by gaussian elimination utilizing imp',
| 'licit differentiation. ',6(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2502
2502 FORMAT (/
| ' ','II. Hierarchy of Subroutines. ',/,
| ' ',' NUC123 ',
| ' Main program (main menu) ',/,
| ' ',' HELP ',
| ' Help option ',/,
| ' ',' SETCOM ',
| ' Set computational parameters',/,
| ' ',' SETMOD ',
| ' Set model parameters ',/,
| ' ',' RUN ',
| ' Run computation code ',/,
| ' ',' DRIVER ',
| ' Main routine (Runge-Kutta loop) ',/,
| ' ',' START ',
| ' Initialization routine ',/,
| ' ',' RATE0 ',
| ' Computes weak decay rates ',/,
| ' ',' DERIVS ',
| ' Computes time derivatives ',/,
| ' ',' THERM ',
| ' Computes energy densities ',/,
| ' ',' BESSEL ',
| ' Gives functions of Kn ',/,
| ' ',' KNUX ',
| ' Computes modified Bessel fcn Kn ',/,
| ' ',' NUDENS ',
| ' Computes neutrino energy density ',/,
| ' ',' RATE1-4 ',
| ' Computes rates for reactions',/,
| ' ',' SOL ',
| ' Builds A matrix for eqn dy/dt = Ay ',/,
| ' ',' EQSLIN ',
| ' Solves dy/dt=Ay by gaussian elim ',/,
| ' ',' ACCUM ',
| ' Output accumulator ',/,
| ' ',' OUTPUT ',
| ' Allows user to output result',4(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
C26--------USING INTERFACE SUBROUTINE SECTION.
260 CONTINUE !Using the interface subroutine section.
PRINT 2600
2600 FORMAT (/,
| ' ',22x,'USING THE INTERFACE SUBROUTINE',/,
| ' ',22x,'----- --- --------- ----------',2(/),
| ' ','I. Purpose. ',/,
| ' ',' The interface subroutine CHECK is des',
| 'igned to be an outlet of the program ',/,
| ' ',' into which alterations can be easily ',
| 'plugged. Programs are normally modified',/,
| ' ',' by searching through the program, ide',
| 'ntifying the appropriate areas for ',/,
| ' ',' alterations, and interspersing new co',
| 'mmands while deleting some old ones. ',/,
| ' ',' This process can get tricky unless on',
| 'e actively documents the alterations: ',/,
| ' ',' one might lose track of all of the mo',
| 'difications and deletions. Thus, it is ',/,
| ' ',' worthwhile to put most if not all of ',
| 'the necessary changes into one ',/,
| ' ',' subroutine which is to be called from',
| ' strategic locations in the main ',/,
| ' ',' program. Furthermore, by putting cha',
| 'nges into one small subroutine, one need',/,
| ' ',' only to compile the subroutine CHECK ',
| 'each time instead of the entire nucleo- ',/,
| ' ',' synthesis code. ',8(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2602
2602 FORMAT (/,
| ' ','II. Description. ',/,
| ' ',' Subroutine CHECK is an empty subrouti',
| 'ne with a large COMMON area, giving the ',/,
| ' ',' user ready access to all of the impor',
| 'tant variables in the computations. The',/,
| ' ',' routine is called from various locati',
| 'ons in the main program and the location',/,
| ' ',' spot in the program is labeled by the',
| ' flag "itime". The set call locations ',/,
| ' ',' are given below: ',/,
| ' ',' A. itime = 1 (NUC123, very beginning',
| ' of program run) ',/,
| ' ',' (appropriate for opening files, i',
| 'nitializing variables) ',/,
| ' ',' B. itime = 2 (NUC123, right before g',
| 'oing into the RUN section) ',/,
| ' ',' C. itime = 3 (RUN, right before goin',
| 'g into DRIVER to do the computations) ',/,
| ' ',' D. itime = 4 (DRIVER, in 1st R-K loo',
| 'p after computing derivatives in DERIVS)',/,
| ' ',' E. itime = 7 (DRIVER, in 2nd R-K loo',
| 'p after computing derivatives in DERIVS)',/,
| ' ',' F. itime = 8 (RUN, right after comin',
| 'g back from DRIVER) ',/,
| ' ',' G. itime = 9 (NUC123, right after co',
| 'ming back from the RUN section) ',/,
| ' ',' H. itime =10 (NUC123, very end of pr',
| 'ogram run) ',/,
| ' ',' (appropriate for closing files) ',/,
| ' ',' The difference between the (2,9) pair',
| 'ing and the (3,8) pairing is that for a ',/,
| ' ',' multiple run, the (3,8) pairing would',
| ' be called before and after every run ',/,
| ' ',' but the (2,9) pairing would be called',
| ' before and after the entire sequence. ',4(/),
| ' ','(Enter 1 to continue, <RETURN> to end): ',$)
READ (5,1001) inum
IF (inum.eq.1) THEN
PRINT 2604
2604 FORMAT (/,
| ' ','III. Implementation. ',/,
| ' ',' The additional program statements ar',
| 'e needed in the subroutine CHECK. If a',/,
| ' ',' particular command is to be executed',
| ' when the computer is at a certain ',/,
| ' ',' location in the program -- say label',
| 'ed by itime = 8 -- then in CHECK, one ',/,
| ' ',' must place the command under the sta',
| 'tement, IF (itime.eq.8).... The user ',/,
| ' ',' is at leisure to place his own locat',
| 'ion indicators (5,6) and CALL CHECK ',/,
| ' ',' statements anywhere in the program a',
| 's long as there is a COMMON /check/ ',/,
| ' ',' statement in the particular subrouti',
| 'ne to carry the value of itime along. ',15(/),
| ' ','(Enter <RETURN> to go back to help menu): ',$)
READ (5,*)
GO TO 300
ELSE
GO TO 300
END IF !(inum.eq.1)
ELSE
GO TO 300
END IF !(inum.eq.1)
C27--------EXIT SECTION----------------------------------------------
270 CONTINUE !Exit section.
RETURN
C30--------GO BACK TO MAIN MENU-------------------------------------------
300 CONTINUE
GO TO 100
END
C----------COMMON AREAS.
COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
C----------DEFAULT COMPUTATION PARAMETERS.
REAL cy0 !Default cy.
REAL ct0 !Default ct.
REAL t9i0 !Default t9i.
REAL t9f0 !Default t9f.
REAL ytmin0 !Default ytmin.
INTEGER inc0 !Default accumulation increment.
C----------COMPUTATION PARAMETERS.
REAL cy !Time step limiting constant on abundances.
REAL ct !Time step limiting constant on temperature.
REAL t9i !Initial temperature (in 10**9 K).
REAL t9f !Final temperature (in 10**9 K).
REAL ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
1000 FORMAT (8(/),
| ' ',21x,'SET COMPUTATION PARAMETERS SELECTION',/,
| ' ',21x,'--- ----------- ---------- ---------',//,
| ' ',10x,' 1. CHANGE TIME-STEP LIMITING CONSTANT 1 FROM ',
| f5.3,/,
| ' ',10x,' 2. CHANGE TIME-STEP LIMITING CONSTANT 2 FROM ',
| f5.3,/,
| ' ',10x,' 3. CHANGE INITIAL TIME-STEP FROM ',
| 1pe8.2,' SECONDS',/,
| ' ',10x,' 4. CHANGE INITIAL TEMPERATURE FROM ',
| 1pe8.2,' (10**9 K)',/,
| ' ',10x,' 5. CHANGE FINAL TEMPERATURE FROM ',
| 1pe8.2,' (10**9 K)',/,
| ' ',10x,' 6. CHANGE SMALLEST ABUNDANCES ALLOWED FROM ',
| 1pe8.2,/,
| ' ',10x,' 7. CHANGE ACCUMULATION INCREMENT FROM ',
| 1pe8.2,' ITERATIONS',/,
| ' ',10x,' 8. RESET ALL TO DEFAULT VALUES',/,
| ' ',10x,' 9. EXIT',5(/),
| ' ',10x,'Enter selection (1-9): ',$)
C20--------BRANCH TO APPROPRIATE SECTION--------------------------------
GO TO (210,220,230,240,250,260,270,280,300),inum
GO TO 300 !Improper input or <RETURN>.
210 CONTINUE !Change time step limiting const 1 section.
PRINT 2100
2100 FORMAT (' ','Enter value for time step limiting constant 1: ',$)
READ (5,*) cy
2101 FORMAT (f5.3)
GO TO 400
220 CONTINUE !Change time step limiting const 2 section.
PRINT 2200
2200 FORMAT (' ','Enter value for time step limiting constant 2: ',$)
READ (5,*) ct
GO TO 400
230 CONTINUE !Change initial time step section.
PRINT 2300
2300 FORMAT (' ','Enter value for initial time step: ',$)
READ (5,*) dt1
GO TO 400
240 CONTINUE !Change initial temperature section.
PRINT 2400
2400 FORMAT (' ','Enter value for initial temperature: ',$)
READ (5,*) t9i
GO TO 400
250 CONTINUE !Change final temperature section.
PRINT 2500
2500 FORMAT (' ','Enter value for final temperature: ',$)
READ (5,*) t9f
GO TO 400
260 CONTINUE !Change smallest abundances allowed section.
PRINT 2600
2600 FORMAT (' ','Enter value for smallest abundances allowed: ',$)
READ (5,*) ytmin
GO TO 400
270 CONTINUE !Change accumulation increment section.
PRINT 2700
2700 FORMAT (' ','Enter value for accumulation increment: ',$)
READ (5,*) inc
GO TO 400
280 CONTINUE !Reset all to default values section.
cy = cy0 !Time step limiting constant on abundances.
ct = ct0 !Time step limiting constant on temperature.
dt1 = dt0 !Time step.
t9i = t9i0 !Initial temperature.
t9f = t9f0 !Final temperature.
ytmin = ytmin0 !Smallest abundances allowed.
inc = inc0 !Accumulation increment.
PRINT 2800
2800 FORMAT (' ','All values reset to default - Press <RETURN> ',
| 'to continue: ',$)
READ (5,*)
GO TO 400
300 CONTINUE !Exit section.
RETURN
C----------COMMON AREAS.
COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
C----------DEFAULT MODEL PARAMETERS.
REAL c0(3) !Default c.
REAL cosmo0 !Default cosmological constant.
REAL xi0(3) !Default neutrino degeneracy parameters.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
REAL cosmo !Cosmological constant.
REAL xi(3) !Neutrino degeneracy parameters.
1000 FORMAT (8(/),
| ' ',24x,'SET MODEL PARAMETERS SELECTION',/,
| ' ',24x,'--- ----- ---------- ---------',//,
| ' ',10x,' 1. CHANGE GRAVITATIONAL CONSTANT FROM ',
| 1pe10.3,/,
| ' ',10x,' 2. CHANGE NEUTRON LIFETIME FROM ',
| 1pe10.3,' SECONDS',/,
| ' ',10x,' 3. CHANGE NUMBER OF NEUTRINO SPECIES FROM ',
| 1pe10.3,/,
| ' ',10x,' 4. CHANGE FINAL BARYON-TO-PHOTON RATIO FROM ',
| 1pe10.3,/,
| ' ',10x,' 5. CHANGE COSMOLOGICAL CONSTANT FROM ',
| 1pe10.3,/,
| ' ',10x,' 6. CHANGE XI-ELECTRON FROM ',
| 1pe10.3,/,
| ' ',10x,' 7. CHANGE XI-MUON FROM ',
| 1pe10.3,/,
| ' ',10x,' 8. CHANGE XI-TAUON FROM ',
| 1pe10.3,/,
| ' ',10x,' 9. RESET ALL TO DEFAULT VALUES',/,
| ' ',10x,'10. EXIT',4(/),
| ' ',10x,' Enter selection (1-10): ',$)
C20--------BRANCH TO APPROPRIATE SECTION---------------------------------
GO TO (210,220,230,240,250,260,270,280,290,300),inum
GO TO 300 !Improper input or <RETURN>.
210 CONTINUE !Change gravitational constant section.
PRINT 2100
2100 FORMAT (' ','Enter value for variation of gravitational ',
| 'constant: ',$)
READ (5,*) c(1)
GO TO 400
220 CONTINUE !Change neutron lifetime section.
print 2200
2200 FORMAT (' ','Enter value for neutron lifetime (sec): ',$)
READ (5,*) c(2)
GO TO 400
230 CONTINUE !Change number of neutrino species section.
print 2300
2300 FORMAT (' ','Enter value for number of neutrino species: ',$)
READ (5,*) c(3)
GO TO 400
240 CONTINUE !Change baryon-to-photon ratio section.
print 2400
2400 FORMAT (' ','Enter value for baryon-to-photon ratio: ',$)
READ (5,*) eta1
GO TO 400
250 CONTINUE !Change cosmological constant section.
print 2500
2500 FORMAT (' ','Enter value for cosmological constant: ',$)
READ (5,*) cosmo
GO TO 400
260 CONTINUE !Change neutrino degeneracy section.
print 2600
2600 FORMAT (' ','Enter value for xi electron: ',$)
READ (5,*) xi(1)
GO TO 400
270 CONTINUE !Change neutrino degeneracy section.
print 2700
2700 FORMAT (' ','Enter value for xi muon: ',$)
READ (5,*) xi(2)
GO TO 400
280 CONTINUE !Change neutrino degeneracy section.
print 2800
2800 FORMAT (' ','Enter value for xi tauon: ',$)
READ (5,*) xi(3)
IF ((xi(3).ne.0.).and.(c(3).lt.3.)) THEN
c(3) = 3.
print 2802
2802 FORMAT (' ','Number of neutrinos set to 3')
print 2804
2804 FORMAT (' ','Press <RETURN> to continue: ',$)
READ (5,*)
END IF
GO TO 400
290 CONTINUE !Reset all to default values section.
c(1) = c0(1)
c(2) = c0(2)
c(3) = c0(3)
cosmo = cosmo0
xi(1) = xi0(1)
xi(2) = xi0(2)
xi(3) = xi0(3)
eta1 = eta0
print 2900
2900 FORMAT (' ','All values reset to default - Press <RETURN> ',
| 'to continue: ',$)
READ (5,*)
GO TO 400
300 CONTINUE !Exit section.
RETURN
C----------PARAMETERS.
PARAMETER (ir=1) !Input unit number.
PARAMETER (iw=1) !Output unit number.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (lrec=64) !Total # of nuclear reactions for irun = 2.
PARAMETER (krec=34) !Total # of nuclear reactions for irun = 3.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (lnuc=18) !Total # of nuclides for irun = 2.
PARAMETER (knuc=9) !Total # of nuclides for irun = 3.
C----------COMMON AREAS.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr/ dt1,eta1 !Variational parameters.
COMMON /check1/ itime !Computation location.
COMMON /runopt/ irun,isize,jsize !Run options.
C----------MODEL PARAMETERS.
REAL eta1 !Baryon-to-photon ratio.
REAL c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
REAL cosmo !Cosmological constant.
REAL xi(3) !Neutrino degeneracy parameters.
C----------RUN OPTION.
INTEGER irun !Run network size.
INTEGER isize !Number of nuclides in computation.
INTEGER jsize !Number of reactions in computation.
C----------USER INTERACTION VARIABLES.
REAL rnumb1 !Run parameter for outer loop.
REAL rnumb2 !Run parameter for middle loop.
REAL rnumb3 !Run parameter for inner loop.
REAL rnum1(3) !Run parameter starting value.
REAL rnum2(3) !Run parameter end value.
REAL rnum3(3) !Run parameter increment.
INTEGER inumb !Selection number.
INTEGER inum(3) !Selection number.
INTEGER jnum !Number of loopings to be done.
INTEGER knum !Number of loopings rejected.
INTEGER lnumb1 !Run parameter for outer loop.
INTEGER lnumb2 !Run parameter for middle loop.
INTEGER lnumb3 !Run parameter for inner loop.
INTEGER lnum(3) !Run parameter end value.
INTEGER lchose !User response (alphanumeric).
C----------FLAG AND LABELS.
INTEGER itime !Computation location.
CHARACTER*22 vtype(8) !Label for quantities being varied.
| 'gravitational constant',
| 'neutron lifetime ',
| '# of neutrino species ',
| 'cosmological constant ',
| 'xi-electron ',
| 'xi-muon ',
| 'xi-tauon '/
1000 FORMAT (8(/),
| ' ',32x,'RUN SELECTION',/,
| ' ',32x,'--- ---------',//,
| ' ',27x,' 1. SET RUN NETWORK',/,
| ' ',27x,' 2. GO',/,
| ' ',27x,' 3. DO MULTIPLE RUNS',/,
| ' ',27x,' 4. EXIT',10(/),
| ' ',27x,' Enter selection (1-4): ',$)
C20--------BRANCH TO APPROPRIATE SECTION------------------------------------
GO TO (210,220,230,240),inumb
GO TO 240 !Improper input or <RETURN>.
C21--------SET RUN NETWORK SECTION--------------------------------------
210 CONTINUE
print 2100
2100 FORMAT (' ','Enter network size (1-26 nuclides (default); ',
| '2-18; 3-9): ',$)
READ (5,*) inumb !Read in selection number.
IF ((inumb.ne.1).and.(inumb.ne.2).and.(inumb.ne.3)) inumb = 1 !Default.
IF (inumb.ne.irun) THEN !Run network changed from previously.
irun = inumb !Run network size selection.
END IF
IF (irun.eq.1) THEN !Maximal network size.
isize = nnuc
jsize = nrec
ELSE
IF (irun.eq.2) THEN !Abridged network size.
isize = lnuc
jsize = lrec
ELSE
IF (irun.eq.3) THEN !Minimal network size.
isize = knuc
jsize = krec
END IF
END IF
END IF !(irun.eq.1)
print 2104, irun
2104 FORMAT (' ','Run network set to ',i1,' - Press <RETURN> ',
| 'to continue: ',$)
READ (5,*)
GO TO 300
C22--------GO SECTION--------------------------------------
220 CONTINUE
print 2200
2200 FORMAT (' ','Begin computation run....')
itime = 3
CALL check !Call interface subr before computation.
CALL driver !Do nucleosynthesis computation.
itime = 8
CALL check !Call interface subr after computation.
print 2202
2202 FORMAT (' ','Computation completed - Press <RETURN> to ',
| 'continue: ',$)
READ (5,*)
GO TO 300
C..........GET NUMBER OF LOOPINGS.
230 CONTINUE
print 2300
2300 FORMAT (' ','Enter the number of loopings to be done (1 ',
| '(default); 2; 3): ',$)
READ (5,*) jnum !Read in number of loopings to be done.
IF ((jnum.ne.1).and.(jnum.ne.2).and.(jnum.ne.3)) THEN
jnum = 1 !Default number of loopings.
END IF
knum = 0. !No loopings rejected for now.
DO i = 1,3
IF (i.gt.jnum) THEN
rnum1(i) = 0. !Initialize initial parameter.
rnum2(i) = 0. !Initialize terminal parameter.
rnum3(i) = 1. !Initialize incremental parameter.
inum(i) = 0 !Initialize selection number.
ELSE
2302 FORMAT (8(/),
| ' ',30x,'QUANTITY TO VARY',/,
| ' ',30x,'-------- -- ----',//,
| ' ',25x,' 1. ETA (LOGRITHMIC VARIATION)',/,
| ' ',25x,' 2. G (LINEAR VARIATION)',/,
| ' ',25x,' 3. TAU (LINEAR VARIATION)',/,
| ' ',25x,' 4. # NEUTRINOS (LINEAR VARIATION)',/,
| ' ',25x,' 5. LAMBDA (LINEAR VARIATION)',/,
| ' ',25x,' 6. XI-ELECTRON (LINEAR VARIATION)',/,
| ' ',25x,' 7. XI-MUON (LINEAR VARIATION)',/,
| ' ',25x,' 8. XI-TAUON (LINEAR VARIATION)',/,
| ' ',25x,' 9. NO SELECTION',5(/),
| ' ',25x,' Enter selection (1-9): ',$)
READ (5,1001) inum(i)
IF ((inum(i).lt.1).or.(inum(i).gt.8)) THEN !No selection made.
print 2304
2304 FORMAT (' ','No selection made - Reduce number of ',
| 'loopings by one',/,
| ' ','Press <RETURN> to continue: ',$)
READ (5,*)
knum = knum + 1 !Step up number of loopings rejected.
rnum1(i) = 0. !Initialize initial parameter.
rnum2(i) = 0. !Initialize terminal parameter.
rnum3(i) = 1. !Initialize incremental parameter.
inum(i) = 0 !Initialize selection number.
ELSE !((inum(i).ge.1).and.(inum(i).le.8))
..........INPUT RUN SPECIFICATIONS.
231 CONTINUE
print 2306
2306 FORMAT (' ','Enter minimum value: ',$)
READ (5,*) rnum1(i) !Read in starting value.
print 2308
2308 FORMAT (' ','Enter maximum value: ',$)
READ (5,*) rnum2(i) !Read in terminating value.
232 CONTINUE
print 2310
2310 FORMAT (' ','Enter increment: ',$)
READ (5,*) rnum3(i) !Read in incremental value.
IF (rnum3(i).eq.0.) THEN !Trouble with 0 division later on.
print 2312
2312 FORMAT (' ','Zero increment not allowed: trouble with ',
| 'dividing by zero')
GO TO 232
END IF
print 2314, rnum1(i), rnum2(i), rnum3(i) !Display input info.
2314 FORMAT (' ','Run from ',1pe12.5,' to ',1pe12.5,
| ' in increments of ',1pe12.5)
print 2316
2316 FORMAT (' ','Confirm these values (1=Y or 0=N): ',$)
READ (5,*) lchose !Get confirmation.
2301 FORMAT (a1)
IF (lchose.eq.0) GO TO 231
END IF !((inum(i).lt.1).or.(inum(i).gt.8))
END IF !(i.gt.jnum)
END DO !i = 1,3
jnum = jnum-knum !Number of valid loopings.
IF (jnum.ne.0) THEN !Run requested.
..........PRINTOUT QUANTITY TO VARY, RUN SPECIFICATIONS.
DO l = 1,jnum+knum !Check all loopings.
IF (inum(l).ne.0) THEN !Proper selection was made.
print 2318, vtype(inum(l)),rnum1(l), !Display run params.
..........GET LOGS OF eta VALUES FOR LOGRITHMIC INCREMENTATION.
IF (inum(l).eq.1) THEN !Work with exponents for eta increments.
rnum1(l) = log10(rnum1(l))
rnum2(l) = log10(rnum2(l))
END IF
..........COMPUTE NUMBER OF RUNS FOR EACH LOOPING.
DO l = 1,3
lnum(l) = nint((rnum2(l)-rnum1(l)+rnum3(l))/rnum3(l))
END DO
..........DO MULTIPLE RUNS.
print 2200 !Inform user of beginning of computation.
DO lnumb1 = 0,lnum(1)-1 !Outer loop.
rnumb1 = rnum1(1)+float(lnumb1)*rnum3(1) !Value of param for run.
IF ((inum(1).ge.1).and.(inum(1).le.8)) THEN
IF (inum(1).eq.1) THEN
eta1 = 10**rnumb1 !Vary baryon-to-photon ratio.
ELSE
qvary(inum(1)-1) = rnumb1 !Vary other quantities.
END IF
END IF
DO lnumb2 = 0,lnum(2)-1 !Middle loop.
rnumb2 = rnum1(2)+float(lnumb2)*rnum3(2) !Value of param for run.
IF ((inum(2).ge.1).and.(inum(2).le.8)) THEN
IF (inum(2).eq.1) THEN
eta1 = 10**rnumb2 !Vary baryon-to-photon ratio.
ELSE
qvary(inum(2)-1) = rnumb2 !Vary other quantities.
END IF
END IF
DO lnumb3 = 0,lnum(3)-1 !Inner loop.
rnumb3 = rnum1(3)+float(lnumb3)*rnum3(3) !Value of parameter.
IF ((inum(3).ge.1).and.(inum(3).le.8)) THEN
IF (inum(3).eq.1) THEN
eta1 = 10**rnumb3 !Vary baryon-to-photon ratio.
ELSE
qvary(inum(3)-1) = rnumb3 !Vary other quantities.
END IF
END IF
itime = 3
CALL check !Check interface subr before computation.
CALL driver !Do nucleosynthesis computation.
itime = 8
CALL check !Check interface subroutine after computation.
END DO !lnumb3 = 0,lnum(3)-1
END DO !lnumb2 = 0,lnum(2)-1
END DO !lnumb1 = 0,lnum(1)-1
print 2202 !Inform user of completion of computation.
2320 FORMAT (' ','No selection made - ',
| 'Press <RETURN> to continue: ',$)
END IF !(jnum.ne.0)
READ (5,*)
GO TO 300
C30--------GO BACK TO MENU-----------------------------------------------
300 CONTINUE
GO TO 100
END
C----------PARAMETERS.
PARAMETER (ir=1) !Input unit number.
PARAMETER (iw=1) !Output unit number.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (itmax=40) !Maximum # of line to be printed.
C----------COMMON AREAS.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /flags/ ltime,is,ip,it,mbad !Flags, counters.
COMMON /outdat/ xout,thmout,t9out,tout,dtout, !Output data.
C----------COMPUTATION SETTINGS.
REAL cy !Time step limiting constant on abundances.
REAL ct !Time step limiting constant on temperature.
REAL t9i !Initial temperature (in 10**9 K).
REAL t9f !Final temperature (in 10**9 K).
REAL ytmin !Smallest abundances allowed.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
REAL cosmo !Cosmological constant.
REAL xi(3) !Neutrino degeneracy parameters.
C----------OUTPUT ARRAYS.
REAL xout(itmax,nnuc) !Nuclide mass fractions.
REAL thmout(itmax,6) !Thermodynamic variables.
REAL t9out(itmax) !Temperature (in units of 10**9 K).
REAL tout(itmax) !Time.
REAL dtout(itmax) !Time step.
REAL etaout(itmax) !Baryon-to-photon ratio.
REAL hubout(itmax) !Expansion rate.
C----------OUTPUT FILE STATUS.
INTEGER nout !Number of output requests.
LOGICAL outfile !Indicates if output file used.
1000 FORMAT (8(/),
| ' ',30x,'OUTPUT SELECTION',/,
| ' ',30x,'------ ---------',//,
| ' ',25x,' 1. REQUEST OUTPUT FILE',/,
| ' ',25x,' 2. REQUEST OUTPUT ON SCREEN',/,
| ' ',25x,' 3. EXIT',11(/),
| ' ',25x,' Enter selection (1-3): ',$)
..........BRANCH TO APPROPRIATE SECTION.
GO TO (200,300,400),inum
GO TO 400 !Improper input or <RETURN>.
..........PRINT CAPTION.
nout = nout + 1 !Keep track of number of output requests.
IF (nout.eq.1) THEN
write(2,2000)
2000 FORMAT (54x,'NUCLIDE ABUNDANCE YIELDS',/,
| 54x,'------- --------- ------',//)
END IF
write(2,2002) cy,ct,t9i,t9f,ytmin
2002 FORMAT (' Computational parameters:',/,
| ' cy = ',f5.3,'/ ct = ',f5.3,
| '/ initial temp = ',1pe8.2,
| '/ final temp = ',1pe8.2,
| '/ smallest abundances allowed = ',1pe8.2)
write(2,2004) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
2004 FORMAT (' Model parameters:',/,
| ' g = ',f5.2,'/ tau = ',f6.2,
| '/ # nu = ',f5.2,'/ lambda = ',1pe10.3,
| '/ xi-e = ',e10.3,'/ xi-m = ',e10.3,
| '/ xi-t = ',e10.3,/)
2006 FORMAT (4x,'Temp',8x,'N/H',10x,'P',10x,'D/H',9x,'T/H',8x,
| 'He3/H',8x,'He4',8x,'Li6/H',7x,'Li7/H',7x,
| 'Be7/H',6x,'Li8/H&up',/,132('-'))
DO j = 1,it
write(2,2008) t9out(j),(xout(j,i),i=1,10)
2008 FORMAT (1pe10.3,1p10e12.3)
END DO
2010 FORMAT (' ',/,4x,'Temp',9x,'T',10x,'rhog',8x,'rhoe',7x,
| 'rhone',8x,'rhob',8x,'phie',9x,'dt',9x,
| 'eta',10x,'H',/,132('-'))
DO j = 1,it
write(2,2012) t9out(j),tout(j),(thmout(j,i),i=1,5),dtout(j),
| etaout(j),hubout(j)
2012 FORMAT (1pe10.3,9e12.3)
END DO
write(2,2014)
2014 FORMAT (///)
outfile = .true. !Output file requested.
print 2016
2016 FORMAT (' ','Output file requested - Press <RETURN> to ',
| 'continue: ',$)
READ (5,*)
GO TO 500
3000 FORMAT (8(/),
| ' ',26x,'SCREEN OUTPUT SELECTION',/,
| ' ',26x,'------ ------ ---------',//,
| ' ',25x,' 1. DISPLAY D,T,HE3,HE4,LI7',/,
| ' ',25x,' 2. DISPLAY N,P,LI6,BE7,LI8&UP',/,
| ' ',25x,' 3. DISPLAY RHOG,RHOE,RHONE,RHOB',/,
| ' ',25x,' 4. DISPLAY T,DT,PHIE,ETA,H',/,
| ' ',25x,' 5. EXIT',9(/),
| ' ',25x,' Enter selection (1-5): ',$)
..........READ IN SELECTION NUMBER.
READ (5,1001) inum
GO TO (310,320,330,340,350),inum
GO TO 350 !Improper input or <RETURN>.
3100 FORMAT (' ','Computational parameters:',/,
| ' ',' cy = ',f5.3,'/ ct = ',f5.3,
| '/ initial temp = ',1pe8.2,
| '/ final temp = ',1pe8.2,/,
| ' ',' smallest abundances allowed = ',1pe8.2)
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3102 FORMAT (' ','Model parameters:',/,
| ' ',' g = ',f5.2,'/ tau = ',f6.2,
| '/ # nu = ',f5.2,'/ lambda = ',1pe10.3,/,
| ' ',' xi-e = ',e10.3,'/ xi-m = ',e10.3,
| '/ xi-t = ',e10.3,/)
3104 FORMAT (4x,'Temp',8x,'D/H',9x,'T/H',8x,'He3/H',8x,
| 'He4',8x,'Li7/H',/,' ',80('-'))
DO j = 1,it
print 3106, t9out(j),(xout(j,i),i=3,6),xout(j,8)
3106 FORMAT (1pe10.3,1p5e12.3)
END DO
print 2014
print 3108
3108 FORMAT (' ','Press <RETURN> to continue: ',$)
READ (5,*)
GO TO 360
320 CONTINUE !Display n,p,li6,be7,li8&up.
..........PRINT CAPTION.
print 2014
print 3100, cy,ct,t9i,t9f,ytmin
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3204 FORMAT (4x,'Temp',8x,'N/H',10x,'P',9x,
| 'Li6/H',7x,'Be7/H',6x,'Li8/H&up',/,' ',80('-'))
DO j = 1,it
print 3106, t9out(j),(xout(j,i),i=1,2),xout(j,7),
| (xout(j,i),i=9,10)
END DO
print 2014
print 3108
READ (5,*)
GO TO 360
330 CONTINUE !Display rhog,rhoe,rhone,rhob.
..........PRINT CAPTION.
print 2014
print 3100, cy,ct,t9i,t9f,ytmin
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3304 FORMAT (4x,'Temp',8x,'rhog',8x,'rhoe',7x,'rhone',8x,'rhob',
| /,' ',80('-'))
DO j = 1,it
print 3306, t9out(j),(thmout(j,i),i=1,4)
3306 FORMAT (1pe10.3,4e12.3)
END DO
print 2014
print 3108
READ (5,*)
GO TO 360
340 CONTINUE !Display t,dt,phie,eta,hubcst.
..........PRINT CAPTION.
print 2014
print 3100, cy,ct,t9i,t9f,ytmin
print 3102, c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3)
3404 FORMAT (4x,'Temp',8x,'time',8x,'phie',9x,'dt',9x,'eta',10x,
| 'H',/,' ',80('-'))
DO j = 1,it
print 3406, t9out(j),tout(j),thmout(j,5),dtout(j),
| etaout(j),hubout(j)
3406 FORMAT (1pe10.3,5e12.3)
END DO
print 2014
print 3108
READ (5,*)
GO TO 360
350 CONTINUE !Exit.
GO TO 500
360 CONTINUE
GO TO 300
C50--------GO BACK TO MENU-------------------------------------------------
500 CONTINUE
GO TO 100
END
C-------PARAMETERS.
PARAMETER (nvar=29) !Number of variables to be evolved.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (cl=1.e-16) !Lower limit on size of time step.
C-------COMMON AREAS.
COMMON /evolp1/ t9,hv,phie,y !Evolution parameters.
COMMON /evolp2/ dt9,dhv,dphie,dydt !Evolution parameters.
COMMON /evolp3/ t90,hv0,phie0,y0 !Evolution parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /time/ t,dt,dlt9dt !Time variables.
COMMON /flags/ ltime,is,ip,it,mbad !Flags,counters.
COMMON /check1/ itime !Computation location.
COMMON /runopt/ irun,isize,jsize !Run options.
C-------EVOLUTION PARAMETERS.
REAL t9 !Temperature (in units of 10**9 K).
REAL hv !Defined by hv = M(atomic)n(baryon)/t9**3.
REAL phie !Chemical potential for electron.
REAL y(nnuc) !Relative number abundances.
C-------EVOLUTION PARAMETERS (ORIGINAL VALUES).
REAL y0(nnuc) !Rel # abund at beginning of iteration.
C-------COMPUTATION PARAMETERS.
REAL cy !Time step limiting constant on abundances.
REAL ct !Time step limiting constant on temperature.
REAL t9f !Final temperature (in 10**9 K).
REAL ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
C-------TIME AND TIME STEP VARIABLES.
REAL t !Time.
REAL dt !Time step.
REAL dlt9dt !(1/t9)*d(t9)/d(t).
C-------COUNTERS AND FLAGS.
INTEGER loop !Counts which Runge-Kutta loop.
INTEGER ltime !Indicates termination status.
INTEGER is !# total time steps for particular run.
INTEGER ip !# time steps after outputting a line.
C-------TIME AND TIME STEP VARIABLES.
REAL dtmin !Mininum time step.
REAL dtl !Time step from limitation on abund changes.
C-------LABELS FOR VARIABLES TO BE TIME EVOLVED.
INTEGER mvar !Total number of variables to be evolved.
REAL v(nvar) !Variables to be time evolved.
REAL dvdt(nvar) !Time derivatives.
REAL v0(nvar) !Value of variables at original point.
REAL dvdt0(nvar) !Value of derivatives at original point.
C10-----INPUT INITIALIZATION INFORMATION, RELABEL-------------------
ltime = 0 !Set termination indicator to zero.
CALL start !Input initialization information.
mvar = isize + 3 !Total number of variables to be evolved.
C20-----LOOP ONE----------------------------------------
200 continue !Begin Runge-Kutta looping.
loop = 1 !Loop indicator.
..........COMPUTE DERIVATIVES OF VARIABLES TO BE EVOLVED.
CALL derivs(loop)
itime = 4 !Time = 1st R-K loop.
CALL check !Check interface subroutine.
..........POSSIBLY TERMINATE COMPUTATION.
IF (ltime.eq.1) THEN !Return to run selection.
RETURN
END IF
..........RESET COUNTERS.
IF (ip.eq.inc) THEN !Reset iteration counters.
ip = 0
END IF
ip = ip + 1
is = is + 1
..........ADJUST TIME STEP.
IF (is.gt.3) THEN !Adjust time step after 3 iterations.
dtmin = abs(1./dlt9dt)*ct !Trial value for minimum time step (Ref 1).
DO i = 1,isize !Go through all abundance changes.
IF ((dydt(i).ne.0.).and.(y(i).gt.ytmin)) THEN
dtl = abs(y(i)/dydt(i))*cy
| *(1.+(alog10(y(i))/alog10(ytmin))**2) !(Ref 2).
IF (dtl.lt.dtmin) dtmin = dtl !Find smallest time step.
END IF
END DO
IF (dtmin.gt.1.5*dt) dtmin = 1.5*dt !Limit change in time step.
dt = dtmin !Set new time step.
END IF
t = t + dt !Increment time.
..........STORE AND INCREMENT VALUES (Ref 3).
DO i = 1,mvar
v0(i) = v(i)
dvdt0(i) = dvdt(i)
v(i) = v0(i) + dvdt0(i)*dt
IF ((i.ge.4).and.(v(i).lt.ytmin)) v(i) = ytmin !Set at minimum value.
END DO
..........COMPUTE DERIVATIVES OF VARIABLES TO BE EVOLVED.
CALL derivs(loop)
itime = 7 !Time = 2nd R-K loop.
CALL check !Check interface subroutine.
..........INCREMENT VALUES.
DO i = 1,mvar
v(i) = v0(i) + .5*(dvdt(i)+dvdt0(i))*dt
IF ((i.ge.4).and.(v(i).lt.ytmin)) v(i) = ytmin !Set at minimum value.
END DO
GO TO 200
C-------PARAMETERS.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (const1=0.09615) !Relation between time and temperature.
PARAMETER (const2=6.6700e-8) !Gravitational constant.
C-------COMMON AREAS.
COMMON /rates/ f,r !Reaction rates.
COMMON /evolp1/ t9,hv,phie,y !Evolution parameters.
COMMON /evolp2/ dt9,dhv,dphie,dydt(nnuc) !Evolution parameters.
COMMON /evolp3/ t90,hv0,phie0,y0 !Evolution parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr/ dt1,eta1 !Variational parameters.
COMMON /time/ t,dt,dlt9dt !Time variables.
COMMON /endens/ rhone0,rhob0,rhob,rnb !Energy densities.
COMMON /xbessel/ bl1,bl2,bl3,bl4,bl5, !Eval of function bl(z).
| bm1,bm2,bm3,bm4,bm5, !Eval of function bm(z).
| bn1,bn2,bn3,bn4,bn5 !Eval of function bn(z).
COMMON /flags/ ltime,is,ip,it,mbad !Flags,counters.
COMMON /nupar/ t9mev,tnmev,tnu,cnorm,nu,rhonu !Neutrino parameters.
COMMON /runopt/ irun,isize,jsize !Run options.
-------EVOLUTION PARAMETERS.
REAL t9 !Temperature (in units of 10**9 K).
REAL hv !Defined by hv = M(atomic)n(baryon)/t9**3.
REAL phie !Chemical potential of electron.
REAL y(nnuc) !Relative number abundances.
C-------COMPUTATION SETTINGS.
REAL t9i !Initial temperature (in 10**9 K).
REAL ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
C-------EARLY UNIVERSE MODEL PARAMETERS.
REAL g !Gravitational constant.
REAL tau !Neutron lifetime.
REAL xnu !Number of neutrino species.
REAL c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron lifetime (sec).
| !c(3) is number of neutrino species.
REAL xi(3) !Neutrino degeneracy parameters.
C-------ENERGY DENSITIES.
REAL rhone0 !Initial electron neutrino mass density.
REAL rhob0 !Initial baryon mass density.
C-------COUNTERS AND FLAGS.
INTEGER ltime !Indicates if output buffer printed.
INTEGER is !# total time steps for particular run.
INTEGER ip !# time steps after outputting a line.
INTEGER it !# times accumulated in output buffer.
INTEGER mbad !Indicates if gaussian elimination fails.
C10-----INITIALIZE FLAGS AND COUNTERS-------------------------
ltime = 0 !No output yet.
is = 1 !First iteration coming up.
ip = inc !Set to maximum allowed # of iteration.
it = 0 !No accumulation yet.
mbad = 0 !No computational errors.
C..........COMPUTATIONAL SETTINGS.
t9 = t9i !Initial temperature.
tnu = t9 !Initial neutrino temperature.
t = 1/(const1*t9)**2 !Initial time (Ref 1).
dt = dt1 !Initial time step.
..........MODEL SETTINGS.
g = const2*c(1) !Modify gravitational constant.
tau = c(2) !Convert n half-life (min) to lifetime (sec).
tau = tau/0.98 !Coulomb correction (Ref 2).
xnu = c(3) !Number of neutrino species.
C30-----COMPUTE INITIAL ABUNDANCES FOR NEUTRON AND PROTON--------------
IF ((15.011/t9+xi(1)).gt.58.) THEN !Overabundance of antineutrinos.
y(1) = 1.e-25 !Very little of neutrons.
y(2) = 1. !Essentially all protons.
ELSE
IF ((15.011/t9+xi(1)).lt.-58.) THEN !Overabundance of neutrinos.
y(1) = 1. !Essentially all neutrons.
y(2) = 1.e-25 !Very little of protons.
ELSE
y(1) = 1./(ex(15.011/t9+xi(1))+1.) !Initial n abundance (Ref 3).
y(2) = 1./(ex(-15.011/t9-xi(1))+1.) !Initial p abundance (Ref 3).
END IF
END IF
IF (xi(1).ne.0.) THEN !Electron neutrino degeneracy.
cnorm = 1.
tnu = .00001 !Low temperature.
CALL rate1(0.00001) !Find normalization constant at low temp.
cnorm = 1/tau/f(1)
print *, cnorm
END IF
y0(1) = y(1)
y0(2) = y(2)
C40-----FIND RATIO OF BARYON DENSITY TO TEMPERATURE CUBED--------------
z = 5.930/t9 !Inverse of temperature.
CALL bessel(z)
hv = 3.3683e+4*eta1*2.75 !(Ref 4 but with final eta).
phie = hv*(1.784e-5*y(2)) !Chemical potential of electron (Ref 5).
| /(.5*z**3*(bl1-2.*bl2+3.*bl3-4.*bl4+5.*bl5))
rhob0 = hv*t9**3 !Baryon density.
IF ((xi(1).eq.0.).and.(xi(2).eq.0.).and.(xi(3).eq.0)) THEN !Nondegen.
rhone0 = 7.366*t9**4 !Electron neutrino density (Ref 6).
END IF
C50-----SET ABUNDANCES FOR REST OF NUCLIDES----------------------
y(3) = y(1)*y(2)*rhob0*ex(25.82/t9)/(.471e+10*t9**1.5) !(Ref 7).
y0(3) = y(3)
DO i = 4,isize
y(i) = ytmin !Set rest to minimum abundance.
y0(i) = y(i) !Init abundances at beginning of iteration.
END DO
CALL rate0 !Compute weak decay rates.
RETURN
C-------PARAMETERS.
PARAMETER (nvar=29) !Number of variables to be evolved.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (pi=3.141593)
C-------COMMON AREAS.
COMMON /evolp1/ t9,hv,phie,y !Evolution parameters.
COMMON /evolp2/ dt9,dhv,dphie,dydt !Evolution parameters.
COMMON /evolp3/ t90,hv0,phie0,y0 !Evolution parameters.
COMMON /modpr/ g,tau,xnu,c(3),cosmo,xi(3) !Model parameters.
COMMON /time/ t,dt,dlt9dt !Time variables.
COMMON /xtherm/ thm,hubcst !Dynamic variables.
COMMON /endens/ rhone0,rhob0,rhob,rnb !Energy densities.
COMMON /nucdat/ am(nnuc),zm,dm !Nuclide data.
COMMON /flags/ ltime,is,ip,it,mbad !Flags,counters.
COMMON /runopt/ irun,isize,jsize !Run options.
C-------EVOLUTION PARAMETERS.
REAL t9 !Temperature (in units of 10**9 K).
REAL hv !Defined by hv = M(atomic)n(baryon)/t9**3.
REAL phie !Chemical potential for electron.
REAL y(nnuc) !Relative number abundances.
C-------EVOLUTION PARAMETERS (DERIVATIVES).
REAL dt9 !Change in temperature.
REAL dhv !Change in hv.
REAL dphie !Change in chemical potential.
REAL dydt(nnuc) !Change in rel number abundances.
C-------EVOLUTION PARAMETERS (ORIGINAL VALUES).
REAL y0(nnuc) !Rel # abund at beginning of iteration.
C-------ENERGY DENSITIES.
REAL rhob0 !Initial baryon mass density.
REAL rhob !Baryon mass density.
REAL rnb !Baryon mass density (ratio to init value).
C-------RUN OPTION.
INTEGER irun !Run network size.
INTEGER isize !Number of nuclides in computation.
C-------SUMS.
REAL sumy !Sum of abundances.
REAL sumzy !Sum of charge*abundances.
REAL sumdy !Sum of abundance flows.
REAL summdy !Sum of (mass excess)*(abundance flows).
REAL sumzdy !Sum of (charge)*(abundance flows).
C-------DERIVATIVES.
REAL dphdt9 !d(phi e)/d(t9).
REAL dphdln !d(phi e)/d(h).
REAL dphdzy !d(phi e)/d(sumzy).
REAL dlndt9 !(1/h)*d(h)/d(t9).
REAL bar !Baryon density and pressure terms.
C10-----COMPUTE DERIVATIVES FOR ABUNDANCES-----------------------
rnb = hv*t9*t9*t9/rhob0 !Baryon mass density (ratio to init value).
..........VARIOUS THERMODYNAMIC QUANTITIES.
CALL therm
hubcst = sqrt((8./3.)*pi*g*(thm(10))+(cosmo/3.)) !Expansion rate.
rhob = thm(9) !Baryon mass density.
..........COMPUTE REACTION RATE COEFFICIENTS.
CALL rate1(t9)
GO TO (100,110,120), irun !Run network selection.
100 CONTINUE
CALL rate4 !Forward rate for all of reactions.
110 CONTINUE
CALL rate3 !Forward rate for reactions with A < 19.
120 CONTINUE
CALL rate2 !Forward rate for reactions with A < 10.
..........SOLVE COUPLED DIFFERENTIAL EQUATIONS.
CALL sol(loop)
IF (mbad.gt.0) RETURN !Abort in case matrix not invertible.
..........ACCUMULATE TO GET SUM.
DO i = 1,isize
sumy = sumy + y(i) !Sum of abundance.
sumzy = sumzy + zm(i)*y(i) !Sum of charge*abundance.
sumdy = sumdy + dydt(i) !Sum of abundance flow.
summdy = summdy + dm(i)*dydt(i) !Sum of (mass excess)*(abundance flow).
sumzdy = sumzdy + zm(i)*dydt(i) !Sum of (charge)*(abundance flow).
END DO
..........CHANGES IN TEMPERATURE, hv, AND CHEMICAL POTENTIAL.
dphdt9 = thm(12)*(-1.070e-4*hv*sumzy/t9 - thm(11))
dphdln = -thm(12)*3.568e-5*hv*sumzy
dphdzy = thm(12)*3.568e-5*hv
bar = 9.25e-5*t9*sumy + 1.388e-4*t9*sumdy/(3.*hubcst)
| + summdy/(3.*hubcst)
dlndt9 = -(thm(2) + thm(5) + thm(6)*dphdt9 + thm(9)*1.388e-4*
| sumy)/(thm(1) + thm(3) + thm(4) + thm(7) + thm(9)*bar
| + thm(6)*(dphdln + dphdzy*sumzdy/(3.*hubcst))) !(Ref 1).
dt9 = (3.*hubcst)/dlndt9
dlt9dt = dt9/t9
dhv = -hv*((3.*hubcst) + 3.*dlt9dt) !(Ref 2).
dphie = dphdt9*dt9 + dphdln*(3.*hubcst) + dphdzy*sumzdy !(Ref 3).
RETURN
C-------PARAMETERS.
PARAMETER (nvar=29) !Number of variables to be evolved.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (itmax=40) !Maximum # of lines to be printed.
C-------COMMON AREAS.
COMMON /evolp1/ t9,hv,phie,y !Evolution parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /time/ t,dt,dlt9dt !Time variables.
COMMON /xtherm/ thm,hubcst !Dynamic variables.
COMMON /nucdat/ am,zm(nnuc),dm(nnuc) !Nuclide data.
COMMON /flags/ ltime,is,ip,it,mbad !Flags,counters.
COMMON /outdat/ xout,thmout,t9out,tout,dtout, !Output data.
C-------EVOLUTION PARAMETERS.
REAL t9 !Temperature (in units of 10**9 K).
REAL hv !Defined by hv = M(atomic)n(baryon)/t9**3.
REAL phie !Chemical potential for electron.
REAL y(nnuc) !Relative number abundances.
C-------COUNTERS AND FLAGS.
INTEGER ltime !Indicates if output buffer printed.
INTEGER it !# times accumulated in output buffer.
INTEGER ip !# time steps after outputting a line.
C-------OUTPUT ARRAYS.
REAL xout(itmax,nnuc) !Nuclide mass fractions.
REAL thmout(itmax,6) !Thermodynamic variables.
REAL t9out(itmax) !Temperature (in units of 10**9 K).
REAL tout(itmax) !Time.
REAL dtout(itmax) !Time step.
REAL etaout(itmax) !Baryon-to-photon ratio.
REAL hubout(itmax) !Expansion rate.
C==================PROCEDURE DIVISION======================
it = it + 1 !Set up accumulation counter.
C..........DIVIDE NUMBER FRACTION BY THAT OF PROTON.
DO i = 1,isize
xout(it,i) = y(i)/y(2)
END DO
xout(it,2) = y(2)*am(2) !Exception for proton.
xout(it,6) = y(6)*am(6) !Exception for helium.
..........SUM UP ABUNDANCES OF HEAVY NUCLIDES.
xout(it,10) = xout(it,10)+xout(it,11)+xout(it,12)+xout(it,13)
| +xout(it,14)+xout(it,15)+xout(it,16)+xout(it,17)
| +xout(it,18)+xout(it,19)+xout(it,20)+xout(it,21)
| +xout(it,22)+xout(it,23)+xout(it,24)+xout(it,25)
| +xout(it,26) !Li8 to O16.
..........RELABEL TEMPERATURE, TIME, THERMODYNAMIC VARIABLES, ETC.
t9out(it) = t9 !Temperature.
tout(it) = t !Time.
thmout(it,1) = thm(1) !rho photon.
thmout(it,2) = thm(4) !rho electron.
thmout(it,3) = thm(8) !rho neutrino.
thmout(it,4) = thm(9) !rho baryon.
thmout(it,5) = phie !Chemical potential.
thmout(it,6) = thm(10) !rho total.
dtout(it) = dt !Time step.
etaout(it) = hv/(3.3683e+4)!Baryon to photon ratio.
hubout(it) = hubcst !Expansion rate.
C20-----INDICATE TERMINATION OF ACCUMULATION IF APPROPRIATE------------
IF ((it.eq.itmax).or.(ip.lt.inc)) ltime = 1
RETURN
END
C-------PARAMETER.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (q=2.531) !(mass(neutron)-mass(proton))/m(electron)
C-------COMMON AREAS.
COMMON /evolp1/ t9,hv,phie,y(nnuc) !Evolution parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr/ g,tau,xnu,c(3),cosmo,xi !Model parameters.
COMMON /xtherm/ thm,hubcst !Dynamic variables.
COMMON /endens/ rhone0,rhob0,rhob,rnb !Energy densities.
COMMON /xbessel/ bl1,bl2,bl3,bl4,bl5, !Eval of function bl(z).
| bm1,bm2,bm3,bm4,bm5, !Eval of function bm(z).
| bn1,bn2,bn3,bn4,bn5 !Eval of function bn(z).
COMMON /nupar/ t9mev,tnmev,tnu,cnorm,nu,rhonu !Integration parameters.
C-------EVOLUTION PARAMETERS.
REAL t9 !Temperature (in units of 10**9 K).
REAL phie !Chemical potential for electron.
C-------EARLY UNIVERSE MODEL PARAMETERS.
REAL xnu !Number of neutrino species.
REAL xi(3) !Neutrino degeneracy parameters.
C-------ENERGY DENSITIES.
REAL rhone0 !Initial electron neutrino mass density.
REAL rhob0 !Initial baryon mass density.
REAL rnb !Baryon mass density (ratio to init value).
C-------EVALUATION OF FUNCTIONS bl,bm,bn.
REAL bl1,bl2,bl3,bl4,bl5 !Evaluation of function bl(z).
REAL bm1,bm2,bm3,bm4,bm5 !Evaluation of function bm(z).
REAL bn1,bn2,bn3,bn4,bn5 !Evaluation of function bn(z).
C-------NEUTRINO PARAMETERS.
REAL tnu !Neutrino temperature.
REAL rhonu !Neutrino energy density.
INTEGER nu !Type of neutrino.
C10-----COMPUTE FACTORS------------------------------------
z = 5.930/t9 !z = m(electron)c**2/k(t9).
tnu = ((rnb)**(1./3.))*t9i !Neutrino temperature.
..........TRIGNOMETRIC FUNCTION VALUES.
IF (phie.le.17.) THEN !No chance of overflow.
cosh1 = cosh(phie)
cosh2 = cosh(2.*phie)
cosh3 = cosh(3.*phie)
cosh4 = cosh(4.*phie)
cosh5 = cosh(5.*phie)
sinh1 = sinh(phie)
sinh2 = sinh(2.*phie)
sinh3 = sinh(3.*phie)
sinh4 = sinh(4.*phie)
sinh5 = sinh(5.*phie)
ELSE
cosh1 = 0.
cosh2 = 0.
cosh3 = 0.
cosh4 = 0.
cosh5 = 0.
sinh1 = 0.
sinh2 = 0.
sinh3 = 0.
sinh4 = 0.
sinh5 = 0.
END IF
CALL bessel(z)
C20-----COMPUTE THERMODYNAMIC VARIABLES--------------------------
thm(1) = 8.418*t9*t9*t9*t9 !(Ref 1).
thm(2) = 4.*thm(1)/t9 !(Ref 2).
thm(3) = thm(1)/3. !(Ref 3).
thm(4) = 3206.*(bm1*cosh1 - bm2*cosh2 + bm3*cosh3 !(Ref 4).
| - bm4*cosh4 + bm5*cosh5)
thm(5) = 3206.*(z/t9)*(bn1*cosh1 - 2.*bn2*cosh2 !(Ref 5).
| + 3.*bn3*cosh3 - 4.*bn4*cosh4 + 5.*bn5*cosh5)
thm(6) = 3206.*(bm1*sinh1 - 2.*bm2*sinh2 + 3.*bm3*sinh3 !(Ref 6).
| - 4.*bm4*sinh4 + 5.*bm5*sinh5)
thm(7) = 3206.*(bl1*cosh1/z - bl2*cosh2/(2.*z) !(Ref 7).
| + bl3*cosh3/(3.*z) - bl4*cosh4/(4.*z)
| + bl5*cosh5/(5.*z))
IF ((xi(1).eq.0.).and.(xi(2).eq.0.).and.(xi(3).eq.0)) THEN !Nondegen.
thm(8) = xnu*rhone0*(rnb**(4./3.)) !(Ref 8).
ELSE !Include effects of neutrino degeneracy.
thm(8) = 0.
DO nu = 1,INT(xnu) !For every neutrino family.
CALL nudens !Compute neutrino energy density.
thm(8) = thm(8) + 12.79264*rhonu !Have 12.79264 from units change.
END DO
END IF
thm(9) = rhob0*rnb !(Ref 9).
thm(10) = thm(1) + thm(4) + thm(8) + thm(9) !(Ref 10).
thm(11) = -(z**3/t9)*(sinh1*(3.*bl1-z*bm1)-sinh2*(3.*bl2 !(Ref 11).
| -2.*z*bm2) + sinh3*(3.*bl3-3.*z*bm3) - sinh4
| *(3.*bl4-4.*z*bm4) + sinh5*(3.*bl5-5.*z*bm5))
thm(12) = z**3*(cosh1*bl1- 2.*cosh2*bl2 !(Ref 12).
| + 3.*cosh3*bl3 - 4.*cosh4*bl4 + 5.*cosh5*bl5)
IF (thm(12).ne.0.) thm(12) = 1./thm(12)
thm(13) = 1.000 + 0.565/z1 - 6.382/z2 + 11.108/z3 !(Ref 13).
| + 36.492/z4 + 27.512/z5
thm(14) = (5.252/z1 - 16.229/z2 + 18.059/z3 + 34.181/z4 !(Ref 14).
| + 27.617/z5)*ex(-q*z)
RETURN
| bm1,bm2,bm3,bm4,bm5, !Eval function bm(z).
| bn1,bn2,bn3,bn4,bn5 !Eval function bn(z).
COMMON /kays/ bk0,bk1,bk2,bk3,bk4 !Coefficients K.
C-------EVALUATION OF FUNCTIONS bl,bm,bn.
REAL bl1,bl2,bl3,bl4,bl5 !Single variables equivalenced to array blz.
REAL bm1,bm2,bm3,bm4,bm5 !Single variables equivalenced to array bmz.
REAL bn1,bn2,bn3,bn4,bn5 !Single variables equivalenced to array bnz.
C-------EVALUATIION OF MODIFIED BESSEL FUNCTIONS.
REAL bk0,bk1,bk2,bk3,bk4 !Values k0(r),k1(r),k2(r),k3(r),k4(r).
C-------LOCAL VARIABLES.
REAL blz(5) !Array containing values from function bl.
REAL bmz(5) !Array containing values from function bm.
REAL bnz(5) !Array containing values from function bn.
REAL z !Defined by z = m(electron)*c**2/k*t9.
REAL r !Multiples of z.
| (blz(5),bl5)
EQUIVALENCE (bmz(1),bm1),(bmz(2),bm2),(bmz(3),bm3),(bmz(4),bm4),
| (bmz(5),bm5)
EQUIVALENCE (bnz(1),bn1),(bnz(2),bn2),(bnz(3),bn3),(bnz(4),bn4),
| (bnz(5),bn5)
C10-----LOCALLY DEFINED FUNCTIONS-----------------------------
bl(z) = bk2/z !Function bl.
bm(z) = 0.25*(3.*bk3+bk1)/z !Function bm.
bn(z) = 0.5*(bk4+bk2)/z !Function bn.
C20-----CALCULATE FOR 1 THRU 5 Z------------------------------
DO i=1,5
r=i*z !Multiples of z.
CALL knux(r) !Get k0(r),k1(r),k2(r),k3(r),k4(r),k(5).
blz(i) = bl(r) !Put value from function bl into array.
bmz(i) = bm(r) !Put value from function bm into array.
bnz(i) = bn(r) !Put value from function bn into array.
END DO
RETURN
END
C--------MODIFIED BESSEL FUNCTION VALUES.
REAL bk0,bk1 !Values k0(z),k1(z)
REAL bi0,bi1 !Values i0(z),i1(z).
REAL bk2,bk3,bk4 !Values k2(z),k3(z),k4(z).
C--------EXPANSION COEFFICIENTS.
REAL ci0(7) !Expansion coefficients for i0 (z.le.2).
REAL ci1(7) !Expansion coefficients for i1 (z.le.2).
REAL ck0(7) !Expansion coefficients for k0 (z.le.2).
REAL ck1(7) !Expansion coefficients for k1 (z.le.2).
REAL c0(7) !Expansion coefficients for k0 (z.gt.2).
REAL c1(7) !Expansion coefficients for k1 (z.gt.2).
C--------VARIABLES TO BE EVALUATED.
REAL z !Input variable.
REAL y !Expansion variable = z/2.
REAL t !Expansion variable = z/3.75.
REAL coeff !Logrithmic or exponential coefficient.
| 3.5156229, 3.0899424, 1.2067492,
| 0.2659732, 0.0360768, 0.0045813/
DATA ci1 / 0.5,
| 0.87890594, 0.51498869, 0.15084934,
| 0.02658733, 0.00301532, 0.00032411/
DATA ck0 /-0.57721566,
| 0.42278420, 0.23069756, 0.03488590,
| 0.00262698, 0.00010750, 0.00000740/
DATA ck1 / 1.,
| 0.15443144, -0.67278579, -0.18156897,
| -0.01919402, -0.00110404, -0.00004686/
DATA c0 / 1.25331414,
| -0.07832358, 0.02189568, -0.01062446,
| 0.00587872, -0.00251540, 0.00053208/
DATA c1 / 1.25331414,
| 0.23498619, -0.03655620, 0.01504268,
| -0.00780353, 0.00325614, -0.00068245/
..........VALUES FOR i0(z) and i1(z).
bi0 = ci0(1)
bi1 = ci1(1)
bk0 = ck0(1)
bk1 = ck1(1)
DO i = 2,7
bi0 = bi0 + ci0(i)*t**(2*(i-1))
bi1 = bi1 + ci1(i)*t**(2*(i-1))
bk0 = bk0 + ck0(i)*y**(2*(i-1))
bk1 = bk1 + ck1(i)*y**(2*(i-1))
END DO
..........VALUES FOR k0(z) and k1(z).
bk0 = c0(1)
bk1 = c1(1)
DO i = 2,7
bk0 = bk0 + c0(i)*y**(i-1)
bk1 = bk1 + c1(i)*y**(i-1)
END DO
bk0 = coeff*bk0
bk1 = coeff*bk1
C20-----FIND K2, K3, AND K4 BY ITERATION (Ref. 3)-------------------
bk2 = 2.*(bk1/z) + bk0 !k2(z).
bk3 = 4.*(bk2/z) + bk1 !k3(z).
bk4 = 6.*(bk3/z) + bk2 !k4(z).
RETURN
C-------COMMON AREAS.
COMMON /modpr/ g,tau,xnu,c(3),cosmo,xi !Model parameters.
COMMON /nupar/ t9mev,tnmev,tnu,cnorm,nu,rhonu !Integration parameters.
C-------EXTERNAL FUNCTIONS.
EXTERNAL func5 !Integral for neutrinos.
EXTERNAL func6 !Integral for antineutrinos.
C-------NEUTRINO PARAMETERS.
REAL tnu !Neutrino temperature (units of 10**9 K).
REAL rhonu !Neutrino energy density.
INTEGER nu !Which neutrino type.
C-------LOCAL VARIABLES.
REAL uplim1 !Upper limit for neutrino energy integral.
REAL uplim2 !Upper limit for antineu energy integral.
| *(7./8.+(15./(4*3.14159**2))*xi(nu)**2
| +(15./(8.*3.14159**4))*xi(nu)**4)
ELSE
IF (abs(xi(nu)).ge.30.) THEN
..........DO INTEGRATION
uplim1 = (88.029+xi(nu))*tnu
uplim2 = (88.029-xi(nu))*tnu
IF (uplim2.le.0.) THEN
rhonu = xintd(0.,uplim1,func5,iter)
ELSE
rhonu= xintd(0.,uplim1,func5,iter)
| + xintd(0.,uplim2,func6,iter)
END IF
END IF !(abs(xi(nu)).ge.30.)
END IF !(abs(xi(nu)).le.0.03)
RETURN
C-------COMMON AREAS.
COMMON /modpr/ g,tau,xnu,c(3),cosmo,xi !Model parameters.
COMMON /nupar/ t9mev,tnmev,tnu,cnorm,nu,rhonu !Integration parameters.
C-------NEUTRINO PARAMETERS.
REAL t9mev !Temperature (in units of MeV).
REAL tnmev !Neutrino temperature (in units of MeV).
REAL tnu !Neutrino temperature (units of 10**9 K).
REAL cnorm !Normalizing constant.
C-------FUNCTIONS TO BE EVALUATED.
REAL func1 !1st part n->p rate.
REAL func2 !2nd part n->p rate.
REAL func3 !1st part p->n rate.
REAL func4 !2nd part p->n rate.
REAL func5 !Energy density for neutrinos.
REAL func6 !Energy density for antineutrinos.
C-------LOCAL VARIABLES.
REAL x !Value at which function is evaluated.
REAL part1 !Exponential expression with photon temp.
REAL part2 !Exponential expression with neutrino temp.
C10-----1ST PART OF INTEGRAL FOR n->p RATE-----------------------
ENTRY func1(x)
IF (x.le.0.) THEN
func1 = 0.
ELSE
part1 = 1./(1.+ex(-.511*x/(t9mev)))
part2 = 1./(1.+ex(+(x-2.531)*(.511/(tnmev))-xi(1)))
func1 = cnorm*x*(x-2.531)**2*(x**2-1)**.5*part1*part2
END IF
RETURN
C20-----2ND PART OF INTEGRAL FOR n->p RATE-----------------------
ENTRY func2(x)
IF (x.le.1.) THEN
func2 = 0.
ELSE
part1 = 1./(1.+ex(+.511*x/(t9mev)))
part2 = 1./(1.+ex(-(x+2.531)*(.511/(tnmev))-xi(1)))
func2 = cnorm*x*(x+2.531)**2*(x**2-1)**.5*part1*part2
END IF
RETURN
C30-----1ST PART OF INTEGRAL FOR p->n RATE-----------------------
ENTRY func3(x)
IF (x.le.1.) THEN
func3 = 0.
ELSE
part1 = 1./(1.+ex(-.511*x/(t9mev)))
part2 = 1./(1.+ex(+(x+2.531)*(.511/(tnmev))+xi(1)))
func3 = cnorm*x*(x+2.531)**2*(x**2-1)**.5*part1*part2
END IF
RETURN
C40-----2ND PART OF INTEGRAL FOR p->n RATE-----------------------
ENTRY func4(x)
IF (x.le.1.) THEN
func4 = 0.
ELSE
part1 = 1./(1.+ex(+.511*x/(t9mev)))
part2 = 1./(1.+ex(-(x-2.531)*(.511/(tnmev))+xi(1)))
func4 = cnorm*x*(x-2.531)**2*(x**2-1)**.5*part1*part2
END IF
RETURN
C50-----INTEGRAL FOR ENERGY DENSITY OF NEUTRINO---------------------
ENTRY func5(x)
func5 = 1./(2*3.14159**2)*x**3/(1.+exp(x/tnu-xi(nu)))
RETURN
C60-----INTEGRAL FOR ENERGY DENSITY OF ANTINEUTRINO-----------------
ENTRY func6(x)
func6 = 1./(2*3.14159**2)*x**3/(1.+exp(x/tnu+xi(nu)))
RETURN
C-------INPUT VARIABLES.
external func
REAL xlow !Array of low limits.
REAL xhi !Array of high limits.
INTEGER nq !Number of six point gaussian quads.
C-------COMPUTATION VARIABLES.
REAL dist !Size of quad interval.
REAL cent !Center of quad interval.
REAL x !Variables of integration.
REAL sum !Summation of terms.
C-------COUNTERS.
INTEGER nint !Interval number.
INTEGER npnt !Point number.
INTEGER np !Total number of points in interval.
| .23861918608320, .66120938646627, .93246951420315/
DATA w/.17132449237917,.36076157304814,.46791393457269,
| .46791393457269,.36076157304814,.17132449237917/
DATA np/6/ !6 point Gaussian integration.
C10-----DO INTEGRATION-------------------------------------
sum = 0.
dist = (xhi-xlow)/float(nq) !Size of quad interval.
DO nint = 1,nq
cent = xlow+(float(nint)-0.5)*dist !Center of interval.
DO npnt = 1,np
x = cent+0.5*dist*u(npnt) !Integration point.
f = func(x) !Evaluate function x(1).
sum = sum+f*w(npnt) !Add up sum.
END DO
END DO
C20-----GET INTEGRAL VALUE---------------------------------
xintd = sum*dist*0.5 !Do integral.
RETURN
END
C==================PROCEDURE DIVISION======================
IF (x.gt.88.029) THEN !In danger of overflow.
ex = exp(88.029)
ELSE
IF (x.lt.-88.722) THEN !In danger of underflow.
ex = 0.
ELSE !Value of x in allowable range.
ex = exp(x)
END IF
END IF
RETURN
C-------PARAMETERS.
PARAMETER (ir=1) !Input unit number.
PARAMETER (iw=1) !Output unit number.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
C--------COMMON AREAS.
COMMON /recpr/ iform,ii,jj,kk,ll,rev,q9 !Reaction parameters names.
COMMON /rates/ f,r !Reaction rates.
COMMON /evolp1/ t9,hv,phie,y !Evolution parameters.
COMMON /evolp2/ dt9,dhv,dphie,dydt !Evolution parameters.
COMMON /evolp3/ t90,hv0,phie0,y0 !Evolution parameters.
COMMON /time/ t,dt,dlt9dt !Time varying parameters.
COMMON /xtherm/ thm(14),hubcst !Dynamic variables.
COMMON /endens/ rhone0,rhob0,rhob,rnb !Energy densities.
COMMON /lncoef/ a,b,yx !Linear eqn coefficients.
COMMON /flags/ ltime,is,ip,it,mbad !Flags,counters.
COMMON /runopt/ irun,isize,jsize !Run option.
C-------REACTION PARAMETERS.
INTEGER iform(nrec) !Reaction code number (1-88).
INTEGER ii(nrec) !Incoming nuclide type (1-26).
INTEGER jj(nrec) !Incoming light nuclide type (1-6).
INTEGER kk(nrec) !Outgoing light nuclide type (1-6).
INTEGER ll(nrec) !Outgoing nuclide type (1-26).
REAL rev(nrec) !Reverse reaction coefficient.
REAL q9(nrec) !Energy released in reaction.
C-------REACTION RATES.
REAL f(nrec) !Forward reaction rate coefficients.
REAL r(nrec) !Reverse reaction rate coefficients.
C-------EVOLUTION PARAMETERS.
REAL t9 !Temperature (in units of 10**9 K).
REAL y(nnuc) !Relative number abundances.
C-------COMPONENTS OF MATRIX EQUATION.
DOUBLE PRECISION a(nnuc,nnuc)!Relates y(t-dt) to y(t).
REAL b(nnuc) !Contains y0 in inverse order.
REAL yx(nnuc) !yy in reverse order.
C-------COUNTERS AND FLAGS.
INTEGER loop !Counts which Runge-Kutta loop.
INTEGER ip !# time steps after outputting a line.
INTEGER mbad !Indicates if gaussian elimination fails.
C-------RUN OPTIONS.
INTEGER isize !Number of nuclides in computation.
INTEGER isize1 !Equals isize + 1.
INTEGER jsize !Number of reactions in computation.
C-------EVOLUTION EQUATION COEFFICIENTS.
INTEGER i,j,k,l !Equate to ii,jj,kk,ll.
REAL ri,rj,rk,rl !Equate to si,sj,sk,sl.
REAL ci,cj,ck,cl !Coefficients of rate equation.
C-------LOCAL VARIABLES.
REAL yy(nnuc) !Abundances at end of iteration.
REAL si(11),sj(11),sk(11),sl(11) !# of nuclide i,j,k,l
REAL bdln !(10**(-5))*volume expansion rate.
INTEGER ind !Equate to iform.
INTEGER ierror !Element which does not converge.
C-------NUMBER OF NUCLIDES IN REACTION TYPES 1-11.
DATA si /1.,1.,1.,1.,1.,2.,3.,2.,1.,1.,2./
DATA sj /0.,1.,1.,0.,1.,0.,0.,1.,1.,1.,0./
DATA sk /0.,0.,1.,0.,0.,1.,0.,0.,1.,0.,2./
DATA sl /1.,1.,1.,2.,2.,1.,1.,1.,2.,3.,1./
..........INITIALIZE A-MATRIX.
DO i = 1,isize
DO j = 1,isize
a(j,i) = 0.d0 !Set a-matrix to zero.
END DO
END DO
..........EQUATE VARIABLES TO ARRAYS.
ind = iform(n) !Type of reaction.
i = ii(n) !ID # of incoming nuclide i.
j = jj(n) !ID # of incoming nuclide j.
k = kk(n) !ID # of outgoing nuclide k.
l = ll(n) !ID # of outgoing nuclide l.
IF ((ind.ne.0).and.(i.le.isize).and.(l.le.isize)) THEN !Reaction okay.
ri = si(ind) !# of incoming nuclide i.
rj = sj(ind) !# of incoming nuclide j.
rk = sk(ind) !# of outgoing nuclide k.
rl = sl(ind) !# of outgoing nuclide l.
201 CONTINUE !1-0-0-1 configuration.
ci = f(n) !(Ref 1).
cj = 0.
ck = 0.
cl = r(n)
GO TO 212
202 CONTINUE !1-1-0-1 configuration.
r(n) = rev(n)*1.e+10*t932*ex(-q9(n)/t9)*f(n) !(Ref 2).
f(n) = rhob*f(n)
ci = y(j)*f(n)/2.
cj = y(i)*f(n)/2.
ck = 0.
cl = r(n)
GO TO 212
203 CONTINUE !1-1-1-1 configuration.
f(n) = rhob*f(n)
r(n) = rev(n)*ex(-q9(n)/t9)*f(n) !(Ref 3).
ci = y(j)*f(n)/2.
cj = y(i)*f(n)/2.
ck = y(l)*r(n)/2.
cl = y(k)*r(n)/2.
GO TO 212
204 CONTINUE !1-0-0-2 configuration.
ci = f(n)
cj = 0.
ck = 0.
cl = y(l)*r(n)/2.
GO TO 212
205 CONTINUE !1-1-0-2 configuration.
f(n) = rhob*f(n)
r(n) = rev(n)*ex(-q9(n)/t9)*f(n) !(Ref 3).
ci = y(j)*f(n)/2.
cj = y(i)*f(n)/2.
ck = 0.
cl = y(l)*r(n)/2.
GO TO 212
206 CONTINUE !2-0-1-1 configuration.
f(n) = rhob*f(n)
r(n) = rev(n)*ex(-q9(n)/t9)*f(n) !(Ref 3).
ci = y(i)*f(n)/2.
cj = 0.
ck = y(l)*r(n)/2.
cl = y(k)*r(n)/2.
GO TO 212
207 CONTINUE !3-0-0-1 configuration.
r(n) = rev(n)*1.e+20*t932*t932*ex(-q9(n)/t9)*f(n) !(Ref 4).
f(n) = rhob*rhob*f(n)
ci = y(i)*y(i)*f(n)/6.
cj = 0.
ck = 0.
cl = r(n)
GO TO 212
208 CONTINUE !2-1-0-1 configuration.
r(n) = rev(n)*1.e+20*t932*t932*ex(-q9(n)/t9)*f(n) !(Ref 4).
f(n) = rhob*rhob*f(n)
ci = y(j)*y(i)*f(n)/3.
cj = y(i)*y(i)*f(n)/6.
ck = 0.
cl = r(n)
GO TO 212
209 CONTINUE !1-1-1-2 configuration.
f(n) = rhob*f(n)
r(n) = rev(n)*1.e-10*t9m32*rhob*ex(-q9(n)/t9)*f(n) !(Ref 5).
ci = y(j)*f(n)/2.
cj = y(i)*f(n)/2.
ck = y(l)*y(l)*r(n)/6.
cl = y(k)*y(l)*r(n)/3.
GO TO 212
210 CONTINUE !1-1-0-3 configuration.
f(n) = rhob*f(n)
r(n) = rev(n)*1.e-10*t9m32*rhob*ex(-q9(n)/t9)*f(n) !(Ref 5).
ci = y(j)*f(n)/2.
cj = y(i)*f(n)/2.
ck = 0.
cl = y(l)*y(l)*r(n)/6.
GO TO 212
211 CONTINUE !2-0-2-1 configuration.
f(n) = rhob*f(n)
r(n) = rev(n)*1.e-10*t9m32*rhob*ex(-q9(n)/t9)*f(n) !(Ref 5).
ci = y(i)*f(n)/2.
cj = 0.
ck = y(l)*y(k)*r(n)/3.
cl = y(k)*y(k)*r(n)/6.
212 CONTINUE
C30-----CONSTRUCT THE A-MATRIX--------------------------------
i = isize1 - i !Invert i index.
j = isize1 - j !Invert j index.
k = isize1 - k !Invert k index.
l = isize1 - l !Invert l index.
..........FILL I NUCLIDE COLUMN.
IF (j.le.isize) a(j,i) = a(j,i) + rj*ci
IF (k.le.isize) a(k,i) = a(k,i) - rk*ci
a(i,i) = a(i,i) + ri*ci
a(l,i) = a(l,i) - rl*ci
..........FILL J NUCLIDE COLUMN.
IF (j.le.isize) THEN
a(j,j) = a(j,j) + rj*cj
IF (k.le.isize) a(k,j) = a(k,j) - rk*cj
a(i,j) = a(i,j) + ri*cj
a(l,j) = a(l,j) - rl*cj
END IF
..........FILL K NUCLIDE COLUMN.
IF (k.le.isize) THEN
IF (j.le.isize) a(j,k) = a(j,k) - rj*ck
a(k,k) = a(k,k) + rk*ck
a(i,k) = a(i,k) - ri*ck
a(l,k) = a(l,k) + rl*ck
END IF
..........FILL L NUCLIDE COLUMN.
IF (j.le.isize) a(j,l) = a(j,l) - rj*cl
IF (k.le.isize) a(k,l) = a(k,l) + rk*cl
a(i,l) = a(i,l) - ri*cl
a(l,l) = a(l,l) + rl*cl
C40-----PUT A-MATRIX AND B-VECTOR IN FINAL FORM OF MATRIX EQUATION--------
bdln = 1.e-5*(3.*hubcst) !(10**(-5))*(Expansion rate).
DO i = 1,isize
i1 = isize1 - i !Invert the rows.
DO j = 1,isize
j1 = isize1 - j !Invert the columns.
IF (dabs(a(j,i)).lt.bdln*y0(j1)/y0(i1)) THEN
a(j,i) = 0.d0 !Set 0 if tiny.
ELSE
a(j,i) = a(j,i)*dt !Bring dt over to other side.
END IF
END DO
a(i,i) = 1.d0 + a(i,i) !Add identity matrix to a-matrix.
b(i1) = y0(i) !Initial abundances.
END DO
C..........SET MONITOR FLAG AND SOLVE BY GAUSSIAN ELIMINATION.
IF (loop.eq.1) THEN
CALL eqslin(ip,ierror)
ELSE
CALL eqslin(0,ierror)
END IF
..........OBTAIN DERIVATIVE.
DO i = 1,isize
yy(i) = yx(isize1-i) !Abundance at t+dt.
dydt(i) = (yy(i) - y0(i))/dt !Take derivative.
END DO
C60-----POSSIBLE ERROR MESSAGES AND EXIT-------------------------
IF (mbad.ne.0) THEN !Problem in gaussian elimination.
IF (mbad.eq.-1) print 6000, ierror !Error message.
IF (mbad.ge. 1) print 6002, mbad !Error message.
6000 FORMAT (' ','** y(', i2, ') fails to converge **')
6002 FORMAT (' ','** ', i2, ' th diagonal term equals zero **')
END IF
RETURN
C-------PARAMETERS.
PARAMETER (nnuc=26) !Rank of matrix.
PARAMETER (mord=1) !Higher order in correction.
PARAMETER (eps=2.e-4) !Tolerance for convergence (.ge. 1.e-7).
C-------COMMON AREAS.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /lncoef/ a,b,y !Lin eqn coefficients.
COMMON /flags/ ltime,is,ip,it,mbad !Flags, counters.
COMMON /runopt/ irun,isize,jsize !Run options.
C-------MATRIX COEFFICIENTS FOR LINEAR EQUATION.
DOUBLE PRECISION a(nnuc,nnuc)!Coefficient array.
REAL b(nnuc) !Right-hand vector w/o manipulation.
REAL y(nnuc) !Solution vector.
C-------LOCAL MATRICES AND VECTORS.
DOUBLE PRECISION a0(nnuc,nnuc)!Coefficient array w/o manipulation.
DOUBLE PRECISION x(nnuc) !Right-hand vector.
C-------LOCAL COMPUTATION VARIABLES.
DOUBLE PRECISION cx !Scaling factor in triangularization.
DOUBLE PRECISION sum !Sum for backsubstitution.
REAL xdy !Relative error.
C-------LOCAL COUNTERS.
INTEGER nord !Order of correction.
INTEGER icnvm !Convergence monitor.
INTEGER ierror !ith nuclide fails to converge.
..........SET RIGHT-HAND AND SOLUTION VECTORS TO INITIAL VALUES.
DO i = 1,isize
x(i) = b(i) !Right-hand vector.
y(i) = 0. !Solution vector.
END DO
..........SAVE MATRIX.
IF (icnvm.eq.inc) THEN !Monitor convergence.
DO i = 1,isize
DO j = 1,isize
a0(j,i) = a(j,i) !Initial value of coefficient array.
END DO
END DO
END IF
C..........CHECK TO SEE THAT THERE ARE NO ZEROES AT PIVOT POINTS.
DO i = 1,isize-1
IF (a(i,i).eq.0.d0) THEN !Don't want to divide by zero.
mbad = i !Position of zero coefficient.
RETURN !Terminate matrix evaluation.
END IF
..........TRIANGULARIZE MATRIX.
DO j = i+1,isize
IF (a(j,i).ne.0.d0) THEN !Progress diagonally down the column.
cx = a(j,i)/a(i,i) !Scaling factor down the column.
DO k = i+1,isize !Progress diagonally along row.
a(j,k) = a(j,k) - cx*a(i,k) !Subtract scaled coeff along row.
END DO
a(j,i) = cx !Scaled coefficient.
C30-----DO BACK SUBSTITUTION-------------------------------
300 CONTINUE
x(isize) = x(isize)/a(isize,isize) !Solution for ultimate position.
y(isize) = y(isize) + x(isize)
DO i = isize-1,1,-1 !From i = penultimate to i = 1.
sum = 0.d0
DO j = i+1,isize
sum = sum + a(i,j)*x(j) !Sum up all previous terms.
END DO
x(i) = (x(i) - sum)/a(i,i)
y(i) = y(i) + x(i) !Add difference to initial value.
END DO
C40-----TESTS AND EXITS------------------------------------
IF (icnvm.eq.inc) THEN
DO i = 1,isize
IF (y(i).ne.0.) THEN
xdy = dabs(x(i)/y(i)) !Relative error.
IF (xdy.gt.eps) THEN
IF (nord.lt.mord) THEN !Continue to higher orders.
nord = nord + 1
..........FIND ERROR IN RIGHT-HAND VECTOR.
DO j = 1,isize
r = 0.d0 !Initialize r.
DO k = 1,isize
r = r + a0(j,k)*y(k) !Left side with approximate solution.
END DO
x(j) = b(j) - r !Subtract difference from right side.
END DO
..........OPERATE ON RIGHT-HAND VECTOR.
DO j = 1,isize-1
DO k = j+1,isize
x(k) = x(k) - a(k,j)*x(j) !Subtract off scaled coefficient.
END DO
END DO
GO TO 300 !Go for another iteratiion.
..........NOT ENOUGH CONVERGENCE.
mbad = -1 !Signal error problem.
ierror = i !ith nuclide for which x/y checked.
RETURN
C-------PARAMETERS.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (iter=50) !Number of gaussian quads.
C-------COMMON AREAS.
COMMON /rates/ f,r !Reaction rates.
COMMON /modpr/ g,tau,xnu,c(3),cosmo,xi !Model parameters.
COMMON /xtherm/ thm,hubcst !Dynamic variables.
COMMON /nupar/ t9mev,tnmev,tnu,cnorm,nu,rhonu !Integration parameters.
C-------EXTERNAL FUNCTIONS.
EXTERNAL func1 !Part 1 of n->p rate.
EXTERNAL func2 !Part 2 of n->p rate.
EXTERNAL func3 !Part 1 of p->n rate.
EXTERNAL func4 !Part 2 of p->n rate.
C-------REACTION RATES.
REAL f(nrec) !Forward reaction rate coefficients.
REAL r(nrec) !Reverse reaction rate coefficients.
C-------EARLY UNIVERSE MODEL PARAMETERS.
REAL tau !Neutron lifetime.
REAL xi(3) !Neutrino degeneracy parameters.
| !xi(1) is e neutrino degeneracy parameter.
| !xi(2) is m neutrino degeneracy parameter.
| !xi(3) is t neutrino degeneracy parameter.
C-------NEUTRINO PARAMETERS.
REAL t9mev !Temperature (in units of MeV).
REAL tnmev !Neutrino temperature (in units of MeV).
C-------LOCAL VARIABLES.
REAL tph !Photon temperature.
REAL w(2),x(2), !Upper limits for exponentials, forward rate.
| y(2),z(2) !Upper limits for exponentials, reverse rate.
REAL uplim1,uplim2, !Upper limits for integrals for forward rate.
| uplim3,uplim4 !Upper limits for integrals for reverse rate.
REAL part1,part2, !Parts of integrals for forward rate.
| part3,part4 !Parts of integrals for reverse rate.
C10-----COMPUTE WEAK REACTION RATES (NONDEGENERATE)-----------------
IF (xi(1).eq.0.) THEN
f(1) = thm(13)/tau !Forward rate for weak np reaction.
r(1) = thm(14)/tau !Reverse rate for weak np reaction.
ELSE
C20-----COMPUTE WEAK REACTION RATES (DEGENERATE)--------------------
t9mev = tph*.086171 !Convert photon temp to units of MeV.
tnmev = tnu*.086171 !Convert neutrino temp to units of MeV.
..........COMPUTE OVERFLOW LIMITS FOR LIMITS OF INTEGRATION (Ref 1 & 2).
w(1) = (-(t9mev/.511)*(-88.722))
w(2) = ((tnmev/.511)*(88.029+xi(1))+2.531)
x(1) = ((t9mev/.511)*(88.029))
x(2) = (-(tnmev/.511)*(-88.722+xi(1))-2.531)
y(1) = (-(t9mev/.511)*(-88.722))
y(2) = ((tnmev/.511)*(88.029-xi(1))-2.531)
z(1) = ((t9mev/.511)*(88.029))
z(2) = (-(tnmev/.511)*(-88.722-xi(1))+2.531)
..........COMPARE LIMITS AND TAKE LARGER OF THE TWO.
uplim1 = abs(w(1))
uplim2 = abs(x(1))
uplim3 = abs(y(1))
uplim4 = abs(z(1))
IF (uplim1.lt.abs(w(2))) uplim1 = w(2)
IF (uplim2.lt.abs(x(2))) uplim2 = x(2)
IF (uplim3.lt.abs(y(2))) uplim3 = y(2)
IF (uplim4.lt.abs(z(2))) uplim4 = z(2)
..........EVALUATE THE INTEGRALS NUMERICALLY.
part1 = xintd(1.,uplim1,func1,iter)
part2 = xintd(1.,uplim2,func2,iter)
part3 = xintd(1.,uplim3,func3,iter)
part4 = xintd(1.,uplim4,func4,iter)
f(1) = part1 + part2 !Add 2 integrals to get forward rate.
r(1) = part3 + part4 !Add 2 integrals to get reverse rate.
C-------PARAMETER.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
C-------COMMON AREAS.
COMMON /rates/ f,r(nrec) !Reaction rates.
COMMON /evolp1/ t9,hv,phie,y(nnuc) !Evolution parameters.
C10-----TEMPERATURE FACTORS--------------------------------
t913 = t9**(.33333333) !t9**(1/3)
t923 = t913*t913 !t9**(2/3)
t943 = t923*t923 !t9**(4/3)
t953 = t9*t923 !t9**(5/3)
t912 = sqrt(t9) !t9**(1/2)
t932 = t9*t912 !t9**(3/2)
t9m1 = 1/t9 !t9**(-1)
t9m23 = 1.0/t923 !t9**(-2/3)
t9m32 = 1.0/t932 !t9**(-3/2)
t9a = t9/(1.0+13.076*t9) !For reaction 17.
t9a32 = t9a**(1.5) !t9a**(3/2)
t9b = t9/(1.+49.18*t9) !For reaction 18.
t9b32 = t9b**(1.5) !t9b**(3/2)
IF (t9.gt.10.) THEN !For reaction 22.
t9c = 1.
ELSE
t9c = t9/(1.-9.69e-2*t9+2.84e-2*t953/(1.-9.69e-2*t9)**(2./3.))
END IF
t9c13 = t9c**(.3333333) !t9c**(1/3)
t9c56 = t9c**(.8333333) !t9c**(5/6)
t9d = t9/(1.+0.759*t9) !For reaction 24.
t9d13 = t9d**(.3333333) !t9d**(1/3)
t9d56 = t9d**(.8333333) !t9d**(5/6)
t9e = t9/(1.+0.1378*t9) !For reaction 26.
t9e13 = t9e**(.3333333) !t9e**(1/3)
t9e56 = t9e**(.8333333) !t9e**(5/6)
t9f = t9/(1.+0.1071*t9) !For reaction 27.
t9f13 = t9f**(.3333333) !t9f**(1/3)
t9f56 = t9f**(.8333333) !t9f**(5/6)
C.......H(n,g)H2...................(Smith-Kawano-Malaney 1992)
f(12) = 4.742e+4*(1.-.8504*t912+.4895*t9-.09623*t932
C.......He3(n,p)H3.................(Smith-Kawano-Malaney 1992)
f(16) = 7.21e+8*(1.-.508*t912+.228*t9)
C.......Be7(n,p)Li7................(Smith-Kawano-Malaney 1992)
f(17) = 2.675e+9*(1.-.560*t912+.179*t9-.0283*t932
C.......H2(p,g)He3.................(Smith-Kawano-Malaney 1992)
f(20) = 2.65e+3*t9m23*ex(-3.720/t913)
C.......Li6(p,g)Be7................(Caughlan-Fowler 1988)
f(22) = 6.69e+5*t9c56*t9m32*ex(-8.413/t9c13)
C.......Li6(p,a)He3................(Caughlan-Fowler 1988)
f(23) = 3.73e+10*t9m23*ex(-8.413/t913-(t9/5.50)**2)
| *(1.+.050*t913-.061*t923-.021*t9+.006*t943+.005*t953)
| + 1.33e+10*t9m32*ex(-17.763/t9)
| + 1.29e+09*t9m1*ex(-21.820/t9)
C.......Li7(p,a)He4................(Smith-Kawano-Malaney 1992)
f(24) = 1.096e+9*t9m23*ex(-8.472/t913)
| - 4.830e+8*t9d56*t9m32*ex(-8.472/t9d13)
| + 1.06e+10*t9m32*ex(-30.442/t9)
| + 1.56e+5*t9m23*ex((-8.472/t913)-(t9/1.696)**2)
| *(1.+.049*t913-2.498*t923+.860*t9+3.518*t943+3.08*t953)
| + 1.55e+6*t9m32*ex(-4.478/t9)
C.......H3(a,g)Li7.................(Smith-Kawano-Malaney 1992)
f(26) = 3.032e+5*t9m23*ex(-8.090/t913)
| *(1.+.0516*t913+.0229*t923+8.28e-3*t9
| -3.28e-4*t943-3.01e-4*t953)
| + 5.109e+5*t9e56*t9m32*ex(-8.068/t9e13)
C.......He3(a,g)Be7................(Smith-Kawano-Malaney 1992)
f(27) = 4.817e+6*t9m23*ex(-14.964/t913)
| *(1.+.0325*t913-1.04e-3*t923-2.37e-4*t9
| -8.11e-5*t943-4.69e-5*t953)
| + 5.938e+6*t9f56*t9m32*ex(-12.859/t9f13)
C.......H2(d,n)He3.................(Smith-Kawano-Malaney 1992)
f(28) = 3.95e+8*t9m23*ex(-4.259/t913)
C.......H2(d,p)H3..................(Smith-Kawano-Malaney 1992)
f(29) = 4.17e+8*t9m23*ex(-4.258/t913)
C.......H3(d,n)He4.................(Smith-Kawano-Malaney 1992)
f(30) = 1.063e+11*t9m23*ex(-4.559/t913-(t9/.0754)**2)
C.......He3(d,p)He4................(Smith-Kawano-Malaney 1992)
f(31) = 5.021e+10*t9m23*ex(-7.144/t913-(t9/.270)**2)
C.......Be7(d,pa)He4...............(Caughlan-Fowler 1988)
f(34) = 1.07e+12*t9m23*ex(-12.428/t913)
RETURN
C-------PARAMETER.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
C-------COMMON AREAS.
COMMON /rates/ f,r(nrec) !Reaction rates.
COMMON /evolp1/ t9,hv,phie,y(nnuc) !Evolution parameters.
C10-----TEMPERATURE FACTORS--------------------------------
t913 = t9**(.33333333) !t9**(1/3)
t923 = t913*t913 !t9**(2/3)
t943 = t923*t923 !t9**(4/3)
t953 = t9*t923 !t9**(5/3)
t912 = sqrt(t9) !t9**(1/2)
t932 = t9*t912 !t9**(3/2)
t915 = t9**(.2) !t9**(1/5)
t954 = t9**(1.25) !t9**(5/4)
t9m1 = 1.0/t9 !t9**(-1)
t9m23 = 1.0/t923 !t9**(-2/3)
t9m32 = 1.0/t932 !t9**(-3/2)
t9m34 = sqrt(t9m32) !t9**(-3/4)
t9m15 = 1.0/t915 !t9**(-1/5)
t9m54 = 1.0/t954 !t9**(-5/4)
t9a = t9/(1.+t9/15.1) !For reaction 53.
t9a13 = t9a**(.3333333) !t9a**(1/3)
t9a56 = t9a**(.8333333) !t9a**(5/6)
C.......B11(n,g)B12................(Malaney-Fowler 1989)
f(37) = 7.29e+2 + 2.40e+3*t9m32*ex(-0.223/t9)
C.......Be9(p,g)B10................(Caughlan-Fowler 1988)
f(41) = 1.33e+7*t9m23*ex(-10.359/t913-(t9/.846)**2)
| *(1.+.040*t913+1.52*t923+.428*t9+2.15*t943+1.54*t953)
| + 9.64e+4*t9m32*ex(-3.445/t9)
| + 2.72e+6*t9m32*ex(-10.620/t9)
C.......B10(p,g)C11................(Caughlan-Fowler 1988)
f(42) = 4.61e+5*t9m23*ex(-12.062/t913-(t9/4.402)**2)
| *(1.+.035*t913+.426*t923+.103*t9+.281*t943+.173*t953)
| + 1.93e+5*t9m32*ex(-12.041/t9)
| + 1.14e+4*t9m32*ex(-16.164/t9)
C.......B11(p,g)C12................(Caughlan-Fowler 1988)
f(43) = 4.62e+7*t9m23*ex(-12.095/t913-(t9/.239)**2)
| *(1.+.035*t913+3.00*t923+.723*t9+9.91*t943+6.07*t953)
| + 7.89e+3*t9m32*ex(-1.733/t9)
| + 9.68e+4*t9m15*ex(-5.617/t9)
C.......C11(p,g)N12................(Caughlan-Fowler 1988)
f(44) = 4.24e+4*t9m23*ex(-13.658/t913-(t9/1.627)**2)
C.......Be9(p,a)Li6................(Caughlan-Fowler 1988)
f(46) = 2.11e+11*t9m23*ex(-10.359/t913-(t9/.520)**2)
| *(1.+.040*t913+1.09*t923+.307*t9+3.21*t943+2.30*t953)
| + 4.51e+8*t9m1*ex(-3.046/t9)
| + 6.70e+8*t9m34*ex(-5.160/t9)
C.......B10(p,a)Be7................(Caughlan-Fowler 1988)
f(47) = 1.26e+11*t9m23*ex(-12.062/t913-(t9/4.402)**2)
C.......Li6(a,g)B10................(Caughlan-Fowler 1988)
f(49) = 4.06e+6*t9m23*ex(-18.790/t913-(t9/1.326)**2)
| *(1.+.022*t913+1.54*t923+.239*t9+2.20*t943+.869*t953)
| + 1.91e+3*t9m32*ex(-3.484/t9)
| + 1.01e+4*t9m1*ex(-7.269/t9)
C.......Li7(a,g)B11................(Caughlan-Fowler 1988)
f(50) = 3.55e+7*t9m23*ex(-19.161/t913-(t9/4.195)**2)
| *(1.+.022*t913+.775*t923+.118*t9+.884*t943+.342*t953)
| + 3.33e+2*t9m32*ex(-2.977/t9)
| + 4.10e+4*t9m1*ex(-6.227/t9)
C.......Be7(a,g)C11................(Caughlan-Fowler 1988)
f(51) = 8.45e+7*t9m23*ex(-23.212/t913-(t9/4.769)**2)
| *(1.+.018*t913+.488*t923+.061*t9+.296*t943+.095*t953)
| + 1.25e+4*t9m32*ex(-6.510/t9)
| + 1.29e+5*t9m54*ex(-10.039/t9)
C.......Li8(a,n)B11................(Malaney-Fowler 1989)
f(53) = 8.62e+13*t9a56*t9m32*ex(-19.461/t9a13)
C.......Be9(a,n)C12................(Caughlan-Fowler 1988)
f(54) = 4.62e+13*t9m23*ex(-23.870/t913-(t9/.049)**2)
| *(1.+.017*t913+8.57*t923+1.05*t9+74.51*t943+23.15*t953)
| + 7.34e-5*t9m32*ex(-1.184/t9)
| + 2.27e-1*t9m32*ex(-1.834/t9)
| + 1.26e+5*t9m32*ex(-4.179/t9)
| + 2.40e+8*ex(-12.732/t9)
C.......He4(an,g)Be9...............(Caughlan-Fowler 1988)
f(58) = (2.59e-6/((1.+.344*t9)*t9**2))*ex(-1.062/t9)
C.......He4(2a,g)C12...............(Caughlan-Fowler 1988)
f(59) = 2.79e-8*t9m32*t9m32*ex(-4.4027/t9)
C.......Li8(p,na)He4...............(original Wagoner code)
f(60) = 8.65e+9*t9m23*ex(-8.52/t913-(t9/2.53)**2)
C.......Be9(p,da)He4...............(Caughlan-Fowler 1988)
f(62) = 2.11e+11*t9m23*ex(-10.359/t913-(t9/.520)**2)
| *(1.+.040*t913+1.09*t923+.307*t9+3.21*t943+2.30*t953)
| + 5.79e+8*t9m1*ex(-3.046/t9)
| + 8.50e+8*t9m34*ex(-5.800/t9)
C.......B11(p,2a)He4...............(Caughlan-Fowler 1988)
f(63) = 2.20e+12*t9m23*ex(-12.095/t913-(t9/1.644)**2)
| *(1.+.034*t913+.140*t923+.034*t9+.190*t943+.116*t953)
| + 4.03e+6*t9m32*ex(-1.734/t9)
| + 6.73e+9*t9m32*ex(-6.262/t9)
| + 3.88e+9*t9m1*ex(-14.154/t9)
C-------PARAMETER.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
C-------COMMON AREAS.
COMMON /rates/ f,r(nrec) !Reaction rates.
COMMON /evolp1/ t9,hv,phie,y(nnuc) !Evolution parameters.
C10-----TEMPERATURE FACTORS--------------------------------
t913 = t9**(.33333333) !t9**(1/3)
t923 = t913*t913 !t9**(2/3)
t943 = t923*t923 !t9**(4/3)
t953 = t9*t923 !t9**(5/3)
t912 = sqrt(t9) !t9**(1/2)
t932 = t9*t912 !t9**(3/2)
t935 = t9**(.6) !t9**(3/5)
t965 = t9**(1.2) !t9**(6/5)
t938 = t9**(.375) !t9**(3/8)
t9m13 = 1.0/t913 !t9**(1/3)
t9m23 = 1.0/t923 !t9**(-2/3)
t9m32 = 1.0/t932 !t9**(-3/2)
t9m65 = 1.0/t965 !t9**(-6/5)
t9a = t9 !For reaction 82.
| /(1.+4.78e-2*t9+7.56e-3*t953/(1.+4.78e-2*t9)**(2./3.))
t9a13 = t9a**(.33333333) !t9a**(1/3)
t9a56 = t9a**(.83333333) !t9a**(5/6)
t9b = t9 !For reaction 84.
| /(1.+7.76e-2*t9+2.64e-2*t953/(1.+7.76e-2*t9)**(2./3.))
t9b13 = t9b**(.33333333) !t9b**(1/3)
t9b56 = t9b**(.83333333) !t9b**(5/6)
C.......C12(p,g)N13................(Caughlan-Fowler 1988)
f(72) = 2.04e+7*t9m23*ex(-13.690/t913-(t9/1.500)**2)
| *(1.+.030*t913+1.19*t923+.254*t9+2.06*t943+1.12*t953)
| + 1.08e+5*t9m32*ex(-4.925/t9)
| + 2.15e+5*t9m32*ex(-18.179/t9)
C.......C13(p,g)N14................(Caughlan-Fowler 1988)
f(73) = 8.01e+7*t9m23*ex(-13.717/t913-(t9/2.000)**2)
C.......C14(p,g)N15................(Caughlan-Fowler 1988)
f(74) = 6.80e+6*t9m23*ex(-13.741/t913-(t9/5.721)**2)
| *(1.+.030*t913+.503*t923+.107*t9+.213*t943+.115*t953)
| + 5.36e+3*t9m32*ex(-3.811/t9)
| + 9.82e+4*t9m13*ex(-4.739/t9)
C.......N13(p,g)O14................(Caughlan-Fowler 1988)
f(75) = 4.04e+7*t9m23*ex(-15.202/t913-(t9/1.191)**2)
C.......N14(p,g)O15................(Caughlan-Fowler 1988)
f(76) = 4.90e+7*t9m23*ex(-15.228/t913-(t9/3.294)**2)
| *(1.+.027*t913-.778*t923-.149*t9+.261*t943+.127*t953)
| + 2.37e+3*t9m32*ex(-3.011/t9)
| + 2.19e+4*ex(-12.530/t9)
C.......N15(p,g)O16................(Caughlan-Fowler 1988)
f(77) = 9.78e+8*t9m23*ex(-15.251/t913-(t9/.450)**2)
| *(1.+.027*t913+.219*t923+.042*t9+6.83*t943+3.32*t953)
| + 1.11e+4*t9m32*ex(-3.328/t9)
| + 1.49e+4*t9m32*ex(-4.665/t9)
| + 3.80e+6*t9m32*ex(-11.048/t9)
C.......N15(p,a)C12................(Caughlan-Fowler 1988)
f(78) = 1.08e+12*t9m23*ex(-15.251/t913-(t9/.522)**2)
| *(1.+.027*t913+2.62*t923+.501*t9+5.36*t943+2.60*t953)
| + 1.19e+8*t9m32*ex(-3.676/t9)
| + 5.41e+8/t912*ex(-8.926/t9)
| + 4.72e+7*t9m32*ex(-7.721/t9)
| + 2.20e+8*t9m32*ex(-11.418/t9)
C.......C12(a,g)O16................(Caughlan-Fowler 1988)
f(79) = 1.04e+8/t9**2*ex(-32.120/t913-(t9/3.496)**2)
| /(1.+.0489*t9m23)**2
| + 1.76e+8/(t9)**2/(1.+.2654*t9m23)**2*ex(-32.120/t913)
| + 1.25e+3*t9m32*ex(-27.499/t9)
| + 1.43e-2*(t9)**5*ex(-15.541/t9)
C.......B11(a,p)C14................(Caughlan-Fowler 1988)
f(81) = 5.37e+11*t9m23*ex(-28.234/t913-(t9/0.347)**2)
| *(1.+.015*t913+5.575*t923+.576*t9+15.888*t943+4.174*t953)
| + 5.44e-3*t9m32*ex(-2.827/t9)
| + 3.36e+2*t9m32*ex(-5.178/t9)
| + 5.32e+6/t938*ex(-11.617/t9)
C.......C11(a,p)N14................(Caughlan-Fowler 1988)
f(82) = 7.15e+15*t9a56*t9m32*ex(-31.883/t9a13)
C.......N13(a,p)O16................(Caughlan-Fowler 1988)
f(84) = 3.23e+17*t9b56*t9m32*ex(-35.829/t9b13)
C.......B10(a,n)N13................(Caughlan-Fowler 1988)
f(85) = 1.20e+13*t9m23*ex(-27.989/t913-(t9/9.589)**2)
C.......B11(a,n)N14................(Caughlan-Fowler 1988)
f(86) = 6.97e+12*t9m23*ex(-28.234/t913-(t9/0.140)**2)
| *(1.+.015*t913+8.115*t923+.838*t9+39.804*t943
| +10.456*t953)
| + 1.79e+0*t9m32*ex(-2.827/t9)
| + 1.71e+3*t9m32*ex(-5.178/t9)
| + 4.49e+6*t935*ex(-8.596/t9)
C.......C13(a,n)O16................(Caughlan-Fowler 1988)
f(88) = 6.77e+15*t9m23*ex(-32.329/t913-(t9/1.284)**2)
| *(1.+.013*t913+2.04*t923+.184*t9)
| + 3.82e+5*t9m32*ex(-9.373/t9)
| + 1.41e+6*t9m32*ex(-11.873/t9)
| + 2.00e+9*t9m32*ex(-20.409/t9)
| + 2.92e+9*t9m32*ex(-29.283/t9)
RETURN
C-------PARAMETERS.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
C-------COMMON AREAS.
COMMON /recpr0/ reacpr !Reaction parameter values.
COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters.
COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /nucdat/ am,zm,dm !Nuclide data.
C-------DEFAULT COMPUTATION PARAMETERS.
REAL cy0 !Default time step limiting constant.
REAL ct0 !Default time step limiting constant.
REAL t9i0 !Default initial temperature (in 10**9 K).
REAL t9f0 !Default final temperature (in 10**9 K).
REAL ytmin0 !Default smallest abundances allowed.
INTEGER inc0 !Default accumulation increment.
| !c0(2) is default neutron half-life.
| !c0(3) is default number of neutrinos.
REAL cosmo0 !Default cosmological constant.
REAL xi0(3) !Default neutrino degeneracy parameters.
C-------DEFAULT VARIATIONAL PARAMETERS.
REAL dt0 !Default initial time step.
REAL eta0 !Default baryon-to-photon ratio.
C-------NUCLIDE DATA.
REAL am(nnuc) !Atomic number of nuclide.
REAL zm(nnuc) !Charge of nuclide.
REAL dm(nnuc) !Mass excess of nuclide.
| 12.,12.,13.,13.,14.,14.,14.,15.,15.,16./
DATA zm /0.,1.,1.,1.,2.,2.,3.,3.,4.,3.,5.,4.,5.,5.,6.,5.,
| 6.,7.,6.,7.,6.,7.,8.,7.,8.,8./
DATA dm /.008665,.007825,.014102,.016050,.016030,.002603,.015125,
| .016004,.016929,.022487,.024609,.012186,.012939,.009305,
| .011432,.014354,.000000,.018641,.003354,.005738,.003242,
| .003074,.008597,.000108,.003070,-.005085/
| 1.,1., 1.,0.,0., 2., 0.0 , 0.0 , !N->P
| 2.,1., 4.,0.,0., 5., 0.0 , 0.0 , !H3->He3
| 3.,4.,10.,0.,0., 6., 0.0 , 0.0 , !Li8->2He4
| 4.,1.,16.,0.,0.,17., 0.0 , 0.0 , !B12->C12
| 5.,1.,21.,0.,0.,22., 0.0 , 0.0 , !C14->N14
| 6.,4.,11.,0.,0., 6., 0.0 , 0.0 , !B8->2He4
| 7.,1.,15.,0.,0.,14., 0.0 , 0.0 , !C11->B11
| 8.,1.,18.,0.,0.,17., 0.0 , 0.0 , !N12->C12
| 9.,1.,20.,0.,0.,19., 0.0 , 0.0 , !N13->C13
| 10.,1.,23.,0.,0.,22., 0.0 , 0.0 , !O14->N14
| 11.,1.,25.,0.,0.,24., 0.0 , 0.0 / !O15->N15
DATA ((reacpr(i,j),j=1,8),i=12,22) /
| 12.,2., 2.,1.,0., 3., 0.471, 25.82, !H(n,g)H2
| 13.,2., 3.,1.,0., 4., 1.63 , 72.62, !H2(n,g)H3
| 14.,2., 5.,1.,0., 6., 2.61 , 238.81, !He3(n,g)He4
| 15.,2., 7.,1.,0., 8., 1.19 , 84.17, !Li6(n,g)Li7
| 16.,3., 5.,1.,2., 4., 1.002, 8.863, !He3(n,p)H3
| 17.,3., 9.,1.,2., 8., 0.998, 19.081, !Be7(n,p)Li7
| 18.,3., 7.,1.,4., 6., 1.070, 55.494, !Li6(n,a)H3
| 19.,5., 9.,1.,0., 6., 4.70 , 220.39, !Be7(n,a)He4
| 20.,2., 3.,2.,0., 5., 1.63 , 63.750, !H2(p,g)He3
| 21.,2., 4.,2.,0., 6., 2.61 , 229.932, !H3(p,g)He4
| 22.,2., 7.,2.,0., 9., 1.19 , 65.054/ !Li6(p,g)Be7
DATA ((reacpr(i,j),j=1,8),i=23,33) /
| 23.,3., 7.,2.,5., 6., 1.07 , 46.631, !Li6(p,a)He3
| 24.,5., 8.,2.,0., 6., 4.69 , 201.291, !Li7(p,a)He4
| 25.,2., 6.,3.,0., 7., 1.53 , 17.118, !H2(a,p)Li6
| 26.,2., 6.,4.,0., 8., 1.11 , 28.640, !H3(a,p)Li7
| 27.,2., 6.,5.,0., 9., 1.11 , 18.423, !He3(a,p)Be7
| 28.,6., 3.,0.,1., 5., 1.73 , 37.935, !H2(d,p)He3
| 29.,6., 3.,0.,2., 4., 1.73 , 46.798, !H2(d,n)H3
| 30.,3., 4.,3.,1., 6., 5.54 , 204.117, !H3(d,n)He4
| 31.,3., 5.,3.,2., 6., 5.55 , 212.980, !He3(d,p)He4
| 32.,11.,5.,0.,2., 6., 3.39 , 149.230, !He3(He3,2p)He4
| 33.,9., 8.,3.,1., 6., 9.95 , 175.476/ !Li7(d,na)He4
DATA ((reacpr(i,j),j=1,8),i=34,44) /
| 34.,9., 9.,3.,2., 6., 9.97 , 194.557, !Be7(d,pa)He4
| 35.,2., 8.,1.,0.,10., 1.31 , 23.59, !Li7(n,g)Li8
| 36.,2.,13.,1.,0.,14., 3.04 , 132.95, !B10(n,g)B11
| 37.,2.,14.,1.,0.,16., 2.34 , 39.10, !B11(n,g)B12
| 38.,3.,15.,1.,2.,14., 1.002, 32.080, !C11(n,p)B11
| 39.,3.,13.,1.,6., 8., 0.758, 32.382, !B10(n,a)Li7
| 40.,2., 9.,2.,0.,11., 1.30 , 1.595, !Be7(p,g)B8
| 41.,2.,12.,2.,0.,13., 0.973, 76.427, !Be9(p,g)B10
| 42.,2.,13.,2.,0.,15., 3.03 , 100.840, !B10(p,g)C11
| 43.,2.,14.,2.,0.,17., 7.01 , 185.173, !B11(p,g)C12
| 44.,2.,15.,2.,0.,18., 2.33 , 6.975/ !C11(p,g)N12
DATA ((reacpr(i,j),j=1,8),i=45,55) /
| 45.,3.,16.,2.,1.,17., 3.00 , 146.08, !B12(p,n)C12
| 46.,3.,12.,2.,6., 7., 0.618, 24.674, !Be9(p,a)Li6
| 47.,3.,13.,2.,6., 9., 0.754, 13.301, !B10(p,a)Be7
| 48.,3.,16.,2.,6.,12., 0.292, 79.89, !B12(p,a)Be9
| 49.,2., 7.,6.,0.,13., 1.58 , 51.753, !Li6(a,g)B10
| 50.,2., 8.,6.,0.,14., 4.02 , 100.538, !Li7(a,g)B11
| 51.,2., 9.,6.,0.,15., 4.02 , 87.539, !Be7(a,g)C11
| 52.,3.,11.,6.,2.,15., 3.08 , 86.00, !B8(a,p)C11
| 53.,3.,10.,6.,1.,14., 3.07 , 76.96, !Li8(a,n)B11
| 54.,3.,12.,6.,1.,17.,10.3 , 66.160, !Be9(a,n)C12
| 55.,3.,12.,3.,1.,13., 2.07 , 50.63/ !Be9(d,n)B10
DATA ((reacpr(i,j),j=1,8),i=56,66) /
| 56.,3.,13.,3.,2.,14., 6.44 , 107.13, !B10(d,p)B11
| 57.,3.,14.,3.,1.,17.,14.9 , 159.36, !B11(d,n)C12
| 58.,8., 6.,1.,0.,12., 0.584, 18.260, !He4(an,g)Be9
| 59.,7., 6.,0.,0.,17., 2.00 , 84.420, !He4(2a,g)C12
| 60.,9.,10.,2.,1., 6., 3.58 , 177.73, !Li8(p,na)He4
| 61.,9.,11.,1.,2., 6., 3.58 , 218.82, !B8(n,pa)He4
| 62.,9.,12.,2.,3., 6., 0.807, 7.555, !Be9(p,da)He4
| 63.,10.,14.,2.,0.,6., 3.50 , 100.753, !B11(p,2a)Be4
| 64.,10.,15.,1.,0.,6., 3.49 , 132.83, !C11(n,2a)He4
| 65.,2.,17.,1.,0.,19., 0.886, 57.41, !C12(n,g)C13
| 66.,2.,19.,1.,0.,21., 3.58 , 94.88/ !C13(n,g)C14
DATA ((reacpr(i,j),j=1,8),i=67,77) /
| 67.,2.,22.,1.,0.,24., 2.71 , 125.74, !N14(n,g)N15
| 68.,3.,20.,1.,2.,19., 1.002, 34.846, !N13(n,p)C13
| 69.,3.,22.,1.,2.,21., 3.003, 7.263, !N14(n,p)C14
| 70.,3.,25.,1.,2.,24., 1.002, 41.037, !O15(n,p)N15
| 71.,3.,25.,1.,6.,17., 0.709, 98.661, !O15(n,a)C12
| 72.,2.,17.,2.,0.,20., 0.884, 22.553, !C12(p,g)N13
| 73.,2.,19.,2.,0.,22., 1.19 , 87.621, !C13(p,g)N14
| 74.,2.,21.,2.,0.,24., 0.900, 118.452, !C14(p,g)N15
| 75.,2.,20.,2.,0.,23., 3.57 , 53.706, !N13(p,g)O14
| 76.,2.,22.,2.,0.,25., 2.70 , 84.678, !N14(p,g)O15
| 77.,2.,24.,2.,0.,26., 3.62 , 140.734/ !N15(p,g)O16
DATA ((reacpr(i,j),j=1,8),i=78,88) /
| 78.,3.,24.,2.,6.,17., 0.706, 57.623, !N15(p,a)C12
| 79.,2.,17.,6.,0.,26., 5.13 , 83.111, !C12(a,g)O16
| 80.,3.,13.,6.,2.,19., 9.36 , 47.16, !B10(a,p)C13
| 81.,3.,14.,6.,2.,21.,11.0 , 9.098, !B11(a,p)C14
| 82.,3.,15.,6.,2.,22., 3.68 , 33.915, !C11(a,p)N14
| 83.,3.,18.,6.,2.,25., 4.26 , 111.87, !N12(a,p)O15
| 84.,3.,20.,6.,2.,26., 5.81 , 60.557, !N13(a,p)O16
| 85.,3.,13.,6.,1.,20., 9.34 , 12.287, !B10(a,n)N13
| 86.,3.,14.,6.,1.,22., 3.67 , 1.835, !B11(a,n)N14
| 87.,3.,16.,6.,1.,24., 4.25 , 88.47, !B12(a,n)N15
| 88.,3.,19.,6.,1.,26., 5.79 , 25.711/ !C13(a,n)O16
C-------DEFAULT COMPUTATION PARAMETERS.
DATA cy0 /.300/ !Default time step limiting constant.
DATA ct0 /.030/ !Default time step limiting constant.
DATA t9i0 /1.00e+02/ !Default initial temperature.
DATA t9f0 /1.00e-02/ !Default final temperature.
DATA ytmin0 /1.00e-25/ !Default smallest abundances allowed.
DATA inc0 /30/ !Default accumulation increment.
C--------DEFAULT MODEL PARAMETERS.
DATA c0 /1.00,887.,3.0/!Default variation of 3 parameters.
DATA cosmo0 /0.00/ !Default cosmological constant.
DATA xi0 /0.00,0.00,0.00/ !Default neutrino degeneracy parameter.
C--------DEFAULT VARIATIONAL PARAMETERS.
DATA dt0 /1.00e-04/ !Default initial time step.
DATA eta0 /3.000e-10/ !Default baryon-to-photon ratio.
END
C-------PARAMETERS.
PARAMETER (nrec=88) !Number of nuclear reactions.
PARAMETER (nvar=29) !Number of variables to be evolved.
PARAMETER (nnuc=26) !Number of nuclides in calculation.
PARAMETER (itmax=40) !Maximum # of lines to be printed.
C-------COMMON AREAS.
COMMON /recpr0/ reacpr !Reaction parameter values.
COMMON /recpr/ iform,ii,jj,kk,ll,rev,q9 !Reaction parameter names.
COMMON /rates/ f,r !Reaction rates.
COMMON /evolp1/ t9,hv,phie,y !Evolution parameters.
COMMON /evolp2/ dt9,dhv,dphie,dydt !Evolution parameters.
COMMON /evolp3/ t90,hv0,phie0,y0 !Evolution parameters.
COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters.
COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters.
COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters.
COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters.
COMMON /varpr0/ dt0,eta0 !Default variationl params.
COMMON /varpr/ dt1,eta1 !Variational parameters.
COMMON /time/ t,dt,dlt9dt !Time variables.
COMMON /xtherm/ thm,hubcst !Dynamic variables.
COMMON /endens/ rhone0,rhob0,rhob,rnb !Energy densities.
COMMON /lncoef/ a,b,yx !Linear eqn coefficients.
COMMON /nucdat/ am,zm,dm !Nuclide data.
COMMON /xbessel/ bl1,bl2,bl3,bl4,bl5, !Eval function bl(z).
| bm1,bm2,bm3,bm4,bm5, !Eval function bm(z).
| bn1,bn2,bn3,bn4,bn5 !Eval function bn(z).
COMMON /kays/ bk0,bk1,bk2,bk3,bk4 !Coefficients K.
COMMON /flags/ ltime,is,ip,it,mbad !Flags,counters.
COMMON /check1/ itime !Computation location.
COMMON /outdat/ xout,thmout,t9out,tout,dtout, !Output data.
| etaout,hubout
COMMON /nupar/ t9mev,tnmev,tnu,cnorm,nu,rhonu !Neutrino parameters.
COMMON /runopt/ irun,isize,jsize !Run options.
COMMON /outopt/ nout,outfile !Output option.
C-------REACTION PARAMETER NAMES.
INTEGER iform(nrec) !Reaction type code (1-11).
INTEGER ii(nrec) !Incoming nuclide type (1-26).
INTEGER jj(nrec) !Incoming light nuclide type (1-6).
INTEGER kk(nrec) !Outgoing light nuclide type (1-6).
INTEGER ll(nrec) !Outgoing nuclide type (1-26).
REAL rev(nrec) !Reverse reaction coefficient.
REAL q9(nrec) !Energy released in reaction (in 10**9 K).
C-------REACTION RATES.
REAL f(nrec) !Forward reaction rate coefficients.
REAL r(nrec) !Reverse reaction rate coefficients.
C-------EVOLUTION PARAMETERS.
REAL t9 !Temperature of photons (units of 10**9 K).
REAL hv !Defined by hv = M(atomic)n(baryon)/t9**3.
REAL phie !Chemical potential of electron.
REAL y(nnuc) !Relative number abundances.
C-------EVOLUTION PARAMETERS (DERIVATIVES).
REAL dt9 !Change in temperature.
REAL dhv !Change in hv.
REAL dphie !Change in chemical potential.
REAL dydt(nnuc) !Change in relative number abundances.
C-------EVOLUTION PARAMETERS (ORIGINAL VALUES).
REAL y0(nnuc) !Rel # abundances at end of 1st R-K loop.
C-------DEFAULT COMPUTATION PARAMETERS.
REAL cy0 !Default cy.
REAL ct0 !Default ct.
REAL t9i0 !Default t9i.
REAL t9f0 !Default t9f.
REAL ytmin0 !Default ytmin.
INTEGER inc0 !Default accumulation increment.
C-------COMPUTATION PARAMETERS.
REAL cy !Time step limiting constant on abundances.
REAL ct !Time step limiting constant on temperature.
REAL t9i !Initial temperature (in 10**9 K).
REAL t9f !Final temperature (in 10**9 K).
REAL ytmin !Smallest abundances allowed.
INTEGER inc !Accumulation increment.
C-------DEFAULT MODEL PARAMETERS.
REAL c0(3) !Default c.
REAL cosmo0 !Default cosmological constant.
REAL xi0(3) !Default neutrino degeneracy parameters.
C-------EARLY UNIVERSE MODEL PARAMETERS.
REAL g !Gravitational constant.
REAL tau !Neutron lifetime (sec).
REAL xnu !Number of neutrino species.
REAL c(3) !c(1) is variation of gravitational constant.
| !c(2) is neutron half-life (min).
| !c(3) is number of neutrino species.
REAL cosmo !Cosmological constant.
REAL xi(3) !Neutrino degeneracy parameters.
| !xi(1) is e neutrino degeneracy parameter.
| !xi(2) is m neutrino degeneracy parameter.
| !xi(3) is t neutrino degeneracy parameter.
C-------DEFAULT VARIATIONAL PARAMETERS.
REAL dt0 !Default initial time step.
REAL eta0 !Default baryon-to-photon ratio.
C-------DYNAMIC VARIABLES.
REAL thm(14) !Thermodynamic variables (energy densities).
REAL hubcst !Expansion rate of the universe.
C-------ENERGY DENSITIES.
REAL rhone0 !Initial electron neutrino energy density.
REAL rhob0 !Initial baryon energy density.
REAL rhob !Baryon energy density.
REAL rnb !Baryon energy density (ratio to init value).
C-------MATRIX COEFFICIENTS FOR LINEAR EQUATION.
DOUBLE PRECISION a(nnuc,nnuc)!Relates y(t+dt) to y(t).
REAL b(nnuc) !Contains y0 in inverse order.
REAL yx(nnuc) !yy in reverse order.
C-------NUCLIDE DATA.
REAL am(nnuc) !Atomic number of nuclide.
REAL zm(nnuc) !Charge of nuclide.
REAL dm(nnuc) !Mass excess of nuclide.
C-------EVALUATION OF FUNCTIONS bl,bm,bn.
REAL bl1,bl2,bl3,bl4,bl5 !Evaluation of function bl(z).
REAL bm1,bm2,bm3,bm4,bm5 !Evaluation of function bm(z).
REAL bn1,bn2,bn3,bn4,bn5 !Evaluation of function bn(z).
C-------EVALUATION OF MODIFIED BESSEL FUNCTIONS.
REAL bk0,bk1,bk2,bk3,bk4 !Values k0(r),k1(r),k2(r),k3(r),k4(r).
C-------FLAGS AND COUNTERS.
INTEGER ltime !Indicates if output buffer printed.
INTEGER is !# total iterations for particular model.
INTEGER ip !# iterations after outputing a line.
INTEGER it !# times accumulated in output buffer.
INTEGER mbad !Indicates if gaussian elimination failed.
C-------OUTPUT ARRAYS.
REAL xout(itmax,nnuc) !Nuclide mass fractions.
REAL thmout(itmax,6) !Thermodynamic variables.
REAL t9out(itmax) !Temperature (in units of 10**9 K).
REAL tout(itmax) !Time.
REAL dtout(itmax) !Time step.
REAL etaout(itmax) !Baryon to photon ratio.
REAL hubout(itmax) !Expansion rate.
C-------NEUTRINO PARAMETERS.
REAL t9mev !Temperature (in units of MeV).
REAL tnmev !Neutrino temperature (in units of MeV).
REAL tnu !Neutrino temperature.
REAL cnorm !Normalizing constant.
REAL rhonu !Neutrino energy density.
INTEGER nu !Type of neutrino.
C-------RUN OPTION.
INTEGER irun !Run network size.
INTEGER isize !Number of nuclides in computation.
INTEGER jsize !Number of reactions in computation.
C-------OUTPUT FILE STATUS.
INTEGER nout !Number of output requests.
LOGICAL outfile !Indicates if output file used.
C10-----OPEN FILE---------------------------------------
IF (itime.eq.1) THEN !Beginning of program.
OPEN (unit=3, file='nucint.dat', status='unknown')
END IF
C20-----PRINTINTO FILE------------------------------------
IF (itime.eq.8) THEN !Right after a run.
xout(it,8) = xout(it,8) + xout(it,9) !Add beryllium to lithium.
xout(it,5) = xout(it,5) + xout(it,4) !Add tritium to helium-3.
xout(it,6) = xout(it,6)-0.0025
| !Radiative, coulomb, finite-temperature corrections (Ref 1).
write(3,200) etaout(it),xout(it,3),
| xout(it,5),xout(it,6),xout(it,8)
| !Output eta, H2, He3, He4, and Li7.
C30-----close FILE--------------------------------------
IF (itime.eq.10) THEN !End of program.
CLOSE (unit=3)
END IF
RETURN