orthopoly.py - A suite of functions for generating orthogonal polynomials and quadrature rules. Copyright (c) 2014 Greg von Winckel All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Last updated on Wed Jan 1 14:29:25 MST 2014
from __future__ import division
import numpy as np
import scipy as sp
import scipy.linalg
Compute the Gauss nodes and weights from the recursion coefficients associated with a set of orthogonal polynomials
Inputs: alpha - recursion coefficients beta - recursion coefficients
Outputs: x - quadrature nodes w - quadrature weights
Adapted from the MATLAB code by Walter Gautschi http://www.cs.purdue.edu/archives/2002/wxg/codes/gauss.m
def gauss(alpha,beta):
from scipy.linalg import eig_banded
A = np.vstack((np.sqrt(beta),alpha))
x,V = eig_banded(A,lower=False)
w = beta[0]*sp.real(sp.power(V[0,:],2))
return x,w
Compute the Radau nodes and weights with the preassigned node xr
Inputs: alpha - recursion coefficients beta - recursion coefficients xr - assigned node location
Outputs: x - quadrature nodes w - quadrature weights
Based on the section 7 of the paper "Some modified matrix eigenvalue problems" by Gene Golub, SIAM Review Vol 15, No. 2, April 1973, pp.318--334
def radau(alpha,beta,xr):
from scipy.linalg import solve_banded
n = len(alpha)-1
f = np.zeros(n)
f[-1] = beta[-1]
A = np.vstack((np.sqrt(beta),alpha-xr))
J = np.vstack((A[:,0:-1],A[0,1:]))
delta = solve_banded((1,1),J,f)
alphar = alpha
alphar[-1] = xr+delta[-1]
x,w = gauss(alphar,beta)
return x,w
Compute the Lobatto nodes and weights with the preassigned nodea xl1,xl2 Inputs: alpha - recursion coefficients beta - recursion coefficients xl1 - assigned node location xl2 - assigned node location Outputs: x - quadrature nodes w - quadrature weights Based on the section 7 of the paper "Some modified matrix eigenvalue problems" by Gene Golub, SIAM Review Vol 15, No. 2, April 1973, pp.318--334
def lobatto(alpha,beta,xl1,xl2):
from scipy.linalg import solve_banded, solve
n = len(alpha)-1
en = np.zeros(n)
en[-1] = 1
A1 = np.vstack((np.sqrt(beta),alpha-xl1))
J1 = np.vstack((A1[:,0:-1],A1[0,1:]))
A2 = np.vstack((np.sqrt(beta),alpha-xl2))
J2 = np.vstack((A2[:,0:-1],A2[0,1:]))
g1 = solve_banded((1,1),J1,en)
g2 = solve_banded((1,1),J2,en)
C = np.array(((1,-g1[-1]),(1,-g2[-1])))
xl = np.array((xl1,xl2))
ab = solve(C,xl)
alphal = alpha
alphal[-1] = ab[0]
betal = beta
betal[-1]=ab[1]
x,w = gauss(alphal,betal)
return x,w
Generate the recursion coefficients alpha_k, beta_k
P_{k+1}(x) = (x-alpha_k)*P_{k}(x) - beta_k P_{k-1}(x)
for the Jacobi polynomials which are orthogonal on [-1,1] with respect to the weight w(x)=[(1-x)^a]*[(1+x)^b]
Inputs: N - polynomial order a - weight parameter b - weight parameter
Outputs: alpha - recursion coefficients beta - recursion coefficients
Adapted from the MATLAB code by Dirk Laurie and Walter Gautschi http://www.cs.purdue.edu/archives/2002/wxg/codes/r_jacobi.m
def rec_jacobi(N,a,b):
from scipy.special import gamma
nu = (b-a)/float(a+b+2)
mu = 2**(a+b+1)*gamma(a+1)*gamma(b+1)/gamma(a+b+2)
if N == 1:
alpha = nu
beta = mu
else:
n = np.arange(1.0,N)
nab = 2*n+a+b
alpha = np.hstack((nu,(b**2-a**2)/(nab*(nab+2))))
n = n[1:]
nab = nab[1:]
B1 = 4*(a+1)*(b+1)/float((a+b+2)**2*(a+b+3))
B = 4*(n+a)*(n+b)*n*(n+a+b)/(nab**2*(nab+1)*(nab-1))
beta = np.hstack((mu,B1,B))
return alpha, beta
Generate the recursion coefficients alpha_k, beta_k for the Jacobi polynomials which are orthogonal on [0,1]
See rec_jacobi for the recursion coefficients on [-1,1]
Inputs: N - polynomial order a - weight parameter b - weight parameter
Outputs: alpha - recursion coefficients beta - recursion coefficients
Adapted from the MATLAB implementation: https://www.cs.purdue.edu/archives/2002/wxg/codes/r_jacobi01.m
def rec_jacobi01(N,a,b):
if a <= -1 or b <= -1:
raise ValueError('''Jacobi coefficients are defined only
for alpha,beta > -1''')
if not isinstance(N,int):
raise TypeError('N must be an integer')
if N<1:
raise ValueError('N must be at least 1')
c,d = rec_jacobi(N,a,b)
alpha = (1+c)/2
beta = d/4
beta[0] = d[0]/2**(a+b+1)
return alpha,beta
Evaluate polynomials on x given the recursion coefficients alpha and beta
def polyval(alpha,beta,x):
N = len(alpha)
m = len(x)
P = np.zeros((m,N+1))
P[:,0] = 1
P[:,1] = (x-alpha[0])*P[:,0]
for k in xrange(1,N):
P[:,k+1] = (x-alpha[k])*P[:,k] - beta[k]*P[:,k-1]
return P
JACOBI computes the Jacobi polynomials which are orthogonal on [-1,1] with respect to the weight w(x)=[(1-x)^a]*[(1+x)^b] and evaluate them on the given grid up to P_N(x). Setting NOPT=2 returns the L2-normalized polynomials
def jacobi(N,a,b,x,NOPT=1):
m = len(x)
P = np.zeros((m,N+1))
apb = a+b
a1 = a-1
b1 = b-1
c = apb*(a-b)
P[:,0] = 1
if N>0:
P[:,1] = 0.5*(a-b+(apb+2)*x)
if N>1:
for k in xrange(2,N+1):
k2 = 2*k
g = k2+apb
g1 = g-1
g2 = g-2
d = 2.0*(k + a1)*(k + b1)*g
P[:,k] = (g1*(c + g2*g*x)*P[:,k-1]-d*P[:,k-2])/(k2*(k + apb)*g2)
if NOPT == 2:
from scipy.special import gamma
k = np.arange(N+1)
pnorm = 2**(apb+1)*gamma(k+a+1)*gamma(k+b+1)/ \
((2*k+a+b+1)*(gamma(k+1)*gamma(k+a+b+1)))
P *= 1/np.sqrt(pnorm)
return P
JACOBID computes the first derivatives of the normalized Jacobi polynomials which are orthogonal on [-1,1] with respect to the weight w(x)=[(1-x)^a]*[(1+x)^b] and evaluate them on the given grid up to P_N(x). Setting NOPT=2 returns the derivatives of the L2-normalized polynomials
def jacobiD(N,a,b,x,NOPT=1):
z = np.zeros((len(x),1))
if N == 0:
Px = z
else:
Px = 0.5*np.hstack((z, jacobi(N-1,a+1,b+1,x,NOPT)* \
((a+b+2+np.arange(N)))))
return Px
MM_LOG Modified moments for a logarithmic weight function.
The call mm=MM_LOG(n,a) computes the first n modified moments of the logarithmic weight function w(t)=t^a log(1/t) on [0,1] relative to shifted Legendre polynomials.
`On the preceding paper
A Legendrepolynomial integral' by James L. Blue'', Math. Comp. 33 (1979), 742-743.
Adapted from the MATLAB implementation: https://www.cs.purdue.edu/archives/2002/wxg/codes/mm_log.m
def mm_log(N,a):
if a <= -1:
raise ValueError('Parameter a must be greater than -1')
prod = lambda z: reduce(lambda x,y:x*y,z,1)
mm = np.zeros(N)
c = 1
for n in range(N):
if isinstance(a,int) and a<n:
p = range(n-a,n+a+2)
mm[n] = (-1)**(n-a)/prod(p)
mm[n] *= sp.special.gamma(a+1)**2
else:
if n == 0:
mm[0] = 1/(a+1)**2
else:
k = np.arange(1,n+1)
s = 1/(a+1+k)-1/(a+1-k)
p = (a+1-k)/(a+1+k)
mm[n] = (1/(a+1)+sum(s))*prod(p)/(a+1);
mm[n] *= c
c *= 0.5*(n+1)/(2*n+1)
return mm
Calcuate the recursion coefficients for the orthogonal polynomials which are are orthogonal with respect to a weight function which is represented in terms of its modifed moments which are obtained by integrating the monic polynomials against the weight function.
REFERENCES:
John C. Wheeler, "Modified moments and Gaussian quadratures" Rocky Mountain Journal of Mathematics, Vol. 4, Num. 2 (1974), 287--296
Walter Gautschi, "Orthogonal Polynomials (in Matlab) Journal of Computational and Applied Mathematics, Vol. 178 (2005) 215--234
Adapted from the MATLAB implementation: https://www.cs.purdue.edu/archives/2002/wxg/codes/chebyshev.m
def mod_chebyshev(N,mom,alpham,betam):
if not isinstance(N,int):
raise TypeError('N must be an integer')
if N<1:
raise ValueError('N must be at least 1')
N = min(N,int(len(mom)/2))
alpha = np.zeros(N)
beta = np.zeros(N)
normsq = np.zeros(N)
sig = np.zeros((N+1,2*N))
alpha[0] = alpham[0]+mom[1]/mom[0]
beta[0] = mom[0]
sig[1,:] = mom
for n in range(2,N+1):
for m in range(n-1,2*N-n+1):
sig[n,m]=sig[n-1,m+1]-(alpha[n-2]-alpham[m])*sig[n-1,m] - \
beta[n-2]*sig[n-2,m]+betam[m]*sig[n-1,m-1]
alpha[n-1] = alpham[n-1]+sig[n,n]/sig[n,n-1]-sig[n-1,n-1]/ \
sig[n-1,n-2]
beta[n-1] = sig[n,n-1]/sig[n-1,n-2]
normsq = np.diagonal(sig,-1)
return alpha,beta,normsq
Generate the recursion coefficients alpha_k, beta_k
P_{k+1}(x) = (x-alpha_k)*P_{k}(x) - beta_k P_{k-1}(x)
for the monic polynomials which are orthogonal on [0,1] with respect to the weight w(x)=x^a*log(1/x)
Inputs: N - polynomial order a - weight parameter
Outputs: alpha - recursion coefficients beta - recursion coefficients
Adated from the MATLAB code: https://www.cs.purdue.edu/archives/2002/wxg/codes/r_jaclog.m
def rec_jaclog(N,a):
alphaj,betaj = rec_jacobi01(2*N,0,0)
mom = mm_log(2*N,a)
alpha,beta,_ = mod_chebyshev(N,mom,alphaj,betaj)
return alpha,beta